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Abstract

SAR Interferometry (InSAR) is a technique that is fast becoming an attractive prospect for
routine derivation of land deformation parameters in events of a long-term and cataclysmic
nature.  The technique involves the analysis of the interferometric phase gradient, in both
temporal and spatial dimensions, as it is generally difficult to derive the absolute value of the
phase due to an integer ambiguity.  Thus, InSAR methods are generally restricted to the
measurement of deformation change from an arbitrary baseline rather than in the derivation of
absolute position.

This paper describes a rigorous InSAR geometry based on a range-Doppler approach similar to
that used in radargrammetry.  An analysis of this geometry in the spaceborne case highlights the
deficiency of the far-field approximation but also shows that a simple derivation of the phase
integer ambiguity is possible from a single InSAR phase measurement.  The accurate
geolocation of wrapped phase values is then possible, limited only by the values of the pseudo-
range contained in the image headers.  Only very coarse ground control, if necessary at all, is
needed to locate a full interferogram.  The rigorous geometry presented is applicable to all
airborne and spaceborne configurations and the generalised position vector may be transformed
to height and position related to any reference datum and map projection through standard
geodetic transformations.

The implications for Differential InSAR are highlighted.  Principally, a reduced reliance on
accurate third party Digital Terrain Models is possible, allowing greater automation and, for
cataclysmic events, a much faster reaction time.

1.  Introduction

SAR interferometry is, and continues to be, a technique of great interest in geophysical remote
sensing.  Over the last 10-15 years, InSAR has proved itself to be a major tool in the monitoring
of land deformation at centimetric accuracies (Zebker et al, 1994), earthquakes (e.g. Massonet et
al, 1993), volcanoes (e.g. Briole et al, 1997), ice sheets (e.g. Goldstein et al, 1993), landslides
(e.g. Fruneau et al, 1996) and terrain subsidence (e.g. Massonnet et al 1997).

In essence, the interferometric technique has many similarities with GNSS where precise
motion requires the analysis of carrier phase.  In InSAR, the receiver is also the transmitter,
meaning that the phase is related to the two-way delay, complicated further by the scattering
mechanism of the target.  If the scattering mechanism is unchanged from a different receiver
position, the signals are correlated and the difference in carrier phase between the two positions
can be calculated.

Like GNSS, the resulting phase difference can only be determined modulo 2π leaving a problem
in that an integer phase ambiguity remains.  In GNSS, there have been several methods
proposed for its solution (e.g. Abidin, 1994; Leick, 1994; Han and Rizos, 1997) and some of
these have been directly applied to the InSAR problem (Hanssen et al, 2001) albeit using many,
stacked, interferograms.
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Sowter, 2003, has proposed a method for the determination of the phase ambiguity for single
SAR interferograms that has clear repercussions for the use of InSAR for monitoring land
movements.  This paper contains a re-development of the differential InSAR concept assuming
the phase ambiguity is known.

2.  InSAR Geometry

The analysis contained in this part of the paper follows the conventions of Sowter, 2003,
throughout.

Consider the imaging geometry of a two-pass InSAR system where the two antennas are at
points P1 and P2 and are both imaging a target at T (Figure 1).

Figure 1.  Typical InSAR Geometry

The full 3-d location of the target at T may be found by solving the three equations:
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where fD1 is the Doppler frequency, λ is the radar wavelength, vP1 is the satellite velocity vector
at P1, φ is the interferometric phase, measured modulo 2π, ∆n12 is the interferometric integer
phase ambiguity and δe is the far field correction factor, given by:
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Numerically, δe is very small compared to the Baseline and changes very little across an image.
However, it is of the order of a wavelength and therefore cannot be ignored for precise
applications that use the phase value.  A good initial estimate for δe, applicable across the whole
image, may be found through substitution of the pseudo-range values into equation 4.



The main problems with the solution of the above lie the identification of the integer phase
ambiguity, ∆n12, the estimation of the range value, ρ1, and the value of the orbital baseline, B.
A solution to this problem for single interferograms is given in Sowter, 2003.

To generate a digital surface model (DSM), the value of ∆n12 is needed for all pixels across the
whole interferogram, a not inconsiderable task if the ambiguity search process is applied
everywhere.  However, if ∆n12 is determined for a single point and the phase is unwrapped from
this solved point, any change in ∆n12 would be compensated by the unwrapped value of φ.  For
areas isolated from a simple unwrapping procedure, such as those bounded by an impassable
low coherent area, such as open water or dense forest, another control point needs to be found
within the isolated area to form a start point for a second unwrapping process.  Thus, the
rigorous geolocation algorithm need not be applied across the whole image.

 The range value ρ1 cannot be simply related to the transmit-receive time (pseudo-range ) as this
will certainly be affected by tropospheric delay (Tarayre and Massonnet, 1996).  However, the
value used is within 10m of the actual value, assuming ERS-type errors (Sowter et al, 1990).

The orbital baseline has perhaps the most serious effect on the accuracy of InSAR (Li and
Goldstein, 1990) and some baseline refinement is certainly required to meet most acceptable
standards of precision (Zebker et al, 1994; Small, 1998).

For the following analysis it is assumed without loss of generality that the effects of errors has
been  minimised through baseline refinement, the selection of highly coherent targets and there
being no change in atmospheric properties between acquisitions.

3.  Phase Deviation

In an error-free differential interferometry scenario, an entirely feasible methodology would be
to calculate the full 3-d positions of the same target in two interferograms and to examine its
displacement.  However, this impossible in the real world, mainly due to the pseudo-range
approximation, and therefore it is usual to examine the interferometric phase change between
the interferograms and to infer target motion from that value alone (Gabriel et al, 1989).

The interferometric phase is related to the baseline declination angle by:
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Consider a typical 3-pass InSAR configuration, where three SAR images are acquired in
succession under the same atmospheric conditions, and that the three satellite positions and the
target lie in the same plane (Figure 2).  The wrapped interferometric phase between the first and
second images and the first and third images are given by φ12 and φ13 respectively.



Figure 2.  3-Pass Differential InSAR Configuration.

The relationship between the two phase values and the two baseline declination angles are
(equation 5):
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Differencing these two equations, it is found that:
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The phase deviation, Φ, is defined by:
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which is zero when there has been no differential change.

P2

P1

T

β12

Β12

Β13

P3

γ

ρ1



4.  Differential Interferometry using the Phase Deviation

An objective of differential InSAR is to calculate the phase deviation, Φ, for all pixels in the
two interferograms.  Any deviation from zero indicates an error or a change in one of the phase
values, possibly indicating a change in target position at the third acquisition.  If there has been
a change in position, the range from P3 to the target T will be shorter or longer than anticipated
and therefore the phase value φ13 will be different from the anticipated value.

Now, let us consider that the target T has been displaced by a small amount between the second
and third image acquisitions causing the phase to be given by:

131313 δφφφ += (10)^

This will cause a phase deviation of (equation 9):
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It is common to resolve this into height δh and planimetric δr distortions such that:
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where θ is the incidence angle with the surface normal.  The incidence angle can be calculated
precisely using a surface normal vector and the vector from P3 to T derived from equations 1-3.

This method outlined above is an extremely precise method for the derivation of the differential
phase change.  The assumptions are:

• The baseline is known very accurately;
• The phase must be unwrapped;
• Coarse ground control is available.

If all of these assumptions are satisfied, precise differential interferometry can be performed
without recourse to using a DSM or using the far-field approximation.

5. Differential Interferometry using the Baseline Ratio

An alternative approach to differential InSAR without using a DSM is to use differences
between flattened phases, scaled by the baseline ratio (Zebker et al, 1994).  The interferometric
phase is related to the baseline declination angle by equation 5.  Consider that an estimate of the
full phase, φ*, derived from some 'flat earth' model, is given by:
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The flattened phase, φflat, is obtained by subtracting the phase estimate from the full phase value:
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The purpose of the flattening is to minimise the value of K such that it is a small constant over
the whole image, leaving only the local topographic component in φflat.  This is assured by:

1. Making sure the flattening is as realistic as possible (e.g. it properly mimics the shape of the
earth covered by the image footprint).  It will also help to minimise the integer phase offset
∆nij -∆n*ij if the flat earth model is coincident with the real topographic surface;

2. Unwrapping φflat.  This will absorb the integer phase offset caused by the local topography.

Therefore:
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It is assumed that β*=β+δβ for some small δβ.  Equation 13 thus becomes:
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The value Bsinβ is the perpendicular component of the baseline, often termed Bperp or B
_
.  This

value is assumed to be derivable from the orbit values, giving the baseline, and the sensor
attitude parameters.  Therefore, the flattened phase value becomes:
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A slight line-of-site error from P3 to T of an amount δρ3 will cause the interferometric phase to
take a value of:
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This final expression allows the derivation of the line of sight error through a simple process of
flattening, unwrapping, rescaling and differencing the phases.  The assumptions in this second
method are:

•  The flat Earth model is sufficiently close to the topographic surface so that second order
terms in δβ can be ignored and that phase integer ambiguities do not occur.  This condition
is more likely to be met in flat terrain, where the value of β will sweep monotonically from
near to far range.  In hilly terrain, β changes more rapidly over foreslopes than backslopes
and therefore this condition is more likely to be in error.

• The phase must be unwrapped;
• The baseline is known very accurately; and
• The radar pointing angle is known very accurately.  As this is related to the value of β, it,

too, is a difficult value to ascertain over hilly terrain.

Satisfying all of these assumptions is an extremely tall order and therefore the method of
differential InSAR that uses the phase deviation must be seen as the most appropriate for the
derivation of precision products.

6.  Conclusions

It has been demonstrated that differential SAR interferometry is possible without the use of a
DSM, through the explicit derivation of the phase integer ambiguity using only coarse ground
control.  Furthermore, a method has been proposed to reduce the amount of ground control
required by the implementation of any standard phase unwrapping scheme.  The equations have
been developed such that the far-field approximation is not adopted yet the equations governing
the formation of the phase deviation and their interpretation hardly differ from those already in
use.  Therefore, it should be easy to implement such a scheme in any existing interferometric
process.

The advantages of such a scheme are to free the user from the constraints formed by having to
seek out a DSM where, for many parts of the world, accuracy, availability and resolution are an
issue.  Indeed, if the area in question has a coastline or a similar zero-elevation feature, the
requirement for ground control disappears as a standard range-Doppler geocoding algorithm
should be able to provide target location to a sufficient accuracy to seed the interferometric
process across the image.
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