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Abstract 
 
It is shown that the minimum-trace datum definition as used for computing 2D and 3D positions 
and displacement vectors as well as their accuracy characteristics  does not yield a physically 
interpretable datum with respect to orientation. This is explained on the basis of the analysis of 
mutual relationships between datum constraints in the initial non-linear Gauss-Markov model 
(GMM) for a local network and the corresponding constraints in the linearized system. A 
property of minimum-trace datum for 2D networks is proved which, in spite of the above 
mentioned drawback, convinces one of the safe use of this datum in practice. The property is 
illustrated on a simple practical example, being a 2D linear-angular monitoring network.  
To keep the contents of the paper within the limits set by the Symposium organisers, the 
relevant proofs, except for one, are given in a brief outline only.  

 

1. Introduction 

A physically interpretable datum is a principal element of every process of determining the 
positions or displacement vectors. In addition to eliminating the defect of the monitoring 
network, such a datum should give a real sense both to the computed quantities and their 
accuracy characteristics. A question arises whether the frequently used minimum-trace datum 
definition fulfils the second requirement. The datum originated in the sixties as a core concept 
of free net adjustment and has since been extensively investigated by many researchers such as 
Meissl (1962), Mittermeyer (1972), Pelzer (1971), Grafarend, Schaffrin (1974), Caspary (1988), 
Papo, Perelmuter (1989) to mention but a few. Their research concentrated on linear (linearized) 
models, geometrical interpretation of the datum constraints and the properties of the least 
squares estimators. From the analysis of those findings, which are not conclusive as regards the 
orientation of  2D and 3D networks, it seems that the question of physical interpretability of the 
minimum-trace datum needs a special treatment. Following this observation, the present paper 
focuses on the question how this datum defines the orientation of the network, and hence, the 
orientation of the displacement vectors. 

 The physically-oriented approach applied in this paper is reflected in the following 
well-known principles: 
-   a co-ordinate system becomes identifiable in a physical reality by attaching it uniquely to a 
group of physical points (i.e. network monuments). The requirement for unique attachment 
follows from the fact that the determined positions of these points are stochastic quantities;  
-   the covariance matrix for a vector of positions (or position changes) must have a physically 
identifiable “zero-variance base”. In a local network the zero-variance base is defined on a 
specified subset of the network points;  
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The basis of the analysis will be the relationships between the constraints in the initial 
non-linear GMM and those in its linearized form. It is the former model that constitutes a proper 
mathematical model of the positioning or monitoring task.  

 

2. Datum-defining constraints in a non-linear GMM and in its linearized  
    form 

Let us recall both a parametric non-linear model with minimum constraints and its 
linearized form  

 

      F(X) + e = y ;    e      ===>        Ax + e = y –  ;   e      (1)           
G(X)  =  c                                    ===>         Sx  =  0  ........................................                                     

)  , (  -  eC0 apy )  , (  -  eC0

 
 

where:     X, x  = the  u × 1 vectors of parameters,  
               F(X), G(X)  =  the  n × 1 and d × 1 functional vectors, such that       

               apd
)]([d

XX
XFA = , apd

)]([d
XX

XG=S  ;  A (n × u)matrix;  rank(A) = u – d     

               (d – the network defect); S (d × u), rank(S) = d;  rank[ = u; TTT ]  SA
                =  the  u × 1 vector of approximate co-ordinates apX
                c     =   the d × 1 vector of constants; 
                e     =   the n x 1 vector of unknown random errors; 
                y     =   the  n × 1 vector of observations;  
                 =  the n × 1 vector of the approximate observation values; apy
               C   =   the n × n covariance matrix of observations (pos. definite). e

 
More specifically, the constraints which constitute the definition of the datum for a local 
network should be written as cXG =)( b  and 0xS =bb  to indicate that they are defined on a 
chosen subset  of the network points.   bP
 

The initial non-linear GMM, when used for positioning, can be interpreted as a description of 
the following task (see Fig.1a – for 2D case): 
 

- construct figure Fg  and locate it uniquely in the co-ordinate system, i.e. according to 
the specified values of the location parameters G(X), here  
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Fig. 1   Specification of the positioning task (a) and the monitoring task (b) 



 
In the case of monitoring the displacements the description of the task will be as follows (see 
Fig. 1b): 
- construct figure  and figure , corresponding to two different  time moments,      
    and locate each uniquely in the co-ordinate system, i.e. according to the specified values of  
    location parameters G(X), here X

)(Fg 1y )(Fg 2y

(Xo X)o = , )(YY oo X= , )(oo Xα=α . 
    Note that we obtain the superposition of the figures ,  in the indirect way, i.e.   
    through locating each in the same datum.  
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Since σ , the point   and the line l  defined on the positions of 
the reference points constitute also the zero-variance base for the accuracy characteristics of 
computed positions or displacement vectors.  

0  ;0  ;0 ooYoX =σ=σ= α oP o

 
From the analysis presented so far it follows that the minimum constraints G(X) = c should 
satisfy the following requirements: 

 
 i. physical interpretability – each constraint should correspond to a specified degree of 

freedom of in a co-ordinate system; )(Fg y
 
ii. differentiability – the possibility of operating with a linear model Sx  =  0.  

 
On this basis we may formulate the corresponding requirements for linear constraints Sx = 0 
when they are created for a linearized model 

Ax + e = y –  ;   e                     (see (1)) apy )  , (  -  eC0

without prior specifying G(X)  =  c: 
 
i.   integrability  – the possibility of obtaining the relationships of the type G(X) = c 
 
ii. physical interpretability – each relationship obtained from integration should be 

identifiable as a constraint corresponding to a specified degree of freedom of in a 
co-ordinate system. 

)(Fg y

 3. Shortcomings of the minimum-trace datum definition 

It is a specific case of datum for a local network, belonging to the class of the minimum-
constraints datums. It uses  (or more specifically MSS = ]   [ ,MM 0SS b= ) such that 

, which along with yields 0AS  T
M = min =1T − vCv e bx̂  = min (and hence = min). 

Also each of the matrices S , where B  is non-singular, can be used equivalently.  

),ˆ bx(Tr C
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The constraints are formulated here at a level of the linearized model so the relationships 
corresponding to (1) can be written as follows  
 
 F(X) + e = y ;          ====>      Ax + e = y –  ;   e  )  , (  -  eC0e apy )  , (  -  eC0
 ↓ (2) 
 G(X)  =  c                                    <= ? ==      S 0x  M =  

 
According to Section 2, the linear constraints S 0x  M =  should satisfy the requirements of 
integrability and physical interpretability. It is easy to see that such is the case with positional 
constraints, where we obtain after integration X .constC = ; .constYC = ; ,C being .constZC =



the gravity centre of the group of reference points. Direct integrating of the orientation and scale 
constraints yields the corresponding constraints for the initial GMM in the form 

. They do not fulfil the requirement of being - independent, i.e. G(X)  =  c. 

Seeking such a form we shall consider the constraints 

cXXG  ),( ap = apX
xM 0S  =  with the approximate co-

ordinates being replaced by the corresponding variables. Then, on integrating the scale con-
straint we obtain immediately M  = const., which by analogy to concepts used in mechanics 

(Leyko 1997), may be called a polar moment of inertia for the group of reference points with 
respect to its gravity centre C. As regards the orientation constraints in S , the proof 
given in Appendix B allows one to draw the following conclusions:  
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                3D networks - for n ≥ 3 the orientation constraints are not integrable; 
 

                2D networks - for n ≥ 3  the orientation constraint is not integrable.  
 
Summing up the above, we may define free net adjustment as solving the initial functional 
model as in (1) with the constraints as follows: 
 

              G ;   p ) c= α=α c )G ;   )(s XG =  , 
where p, α, s  donote positional, orientation and scale constraints respectively.  
 

For a 2D network without scale defect the model can be interpreted as the description of the 
following task (see Fig.2):   
 

-  construct figure and locate it uniquely in the co-ordinate system according to the   
     specified values of the location parameters , i.e. , and the zero value of  

     the relative orientation parameter , i.e. - being the algebraic   

     sum of the hatched areas . 
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Fig.2  The lack of XOY-related orientation parameter for a 2D network 
 
For n ≥ 3 the orientation of the resulting figure cannot be defined directly relative to the 
axes of the co-ordinate system,  i.e. through . Conversely, since the line cannot be 
defined we cannot reproduce the orientation of the X0Y system and we do not have the zero-
variance base for network orientation.  

)(Fg X
)(XαG

The possibility of improving the accuracy of  in the successive iterations, even till apX

 becomes negligibly small, does not lead to finding the required orientation parameter 

.  



4. Advantageous properties of the minimum-trace datum definition 
 

It can be proved (see Appendix C) that for each point of 2D network the following property 
holds (see Fig.3):  

 
 

-  the tangential component  of the solution vector obtained with minimum trace datum is a 
weighted mean 

Mt

wt of the tangential components  (j = 1, 2, ... ,n) of solution vectors obtained 

with the datums, each being „point C fixed, the line  fixed“; the weights being  

(for the formula and the proof see Appendix C). 
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Fig.3  Specific property of the minimum-trace datum for 2D networks 

This implies the following properties:  

*  being a weighted mean,  is always inside the interval Mt >< maxmin t,t  and thus  
      inside the interval obtained with physically interpretable datums; 
*    for  as a weighted mean,  we have  Mt maxt,Mt, σ<σ  . 
 

The above properties are consistent with those formulated for minimum-constraints datums with 
the gravity centre fixed (see relationships (A1), Appendix A). Note also the properties of mini-
mum-trace datum related to the reference points (inequalities (A5) and (A6), Appendix A). 
 

Practical example.  Figure 1 shows the tangential components  and  j = 1,2,...,6 of 
displacement vectors for some points of the angular-linear monitoring network. We can see that 
the arrangement of the t – values is similar for all the three network points.  

Mt (j)t

 
 

5. Concluding remarks  

On the basis of the analysis carried out in this paper one may formulate the following 
conclusions: 
- for n ≥ 3 the minimum-trace datum definition does not specify a physically interpretable 
reference base for the orientation of 2D and 3D networks, and hence for the displacement 
vectors and their accuracy characteristics; 
- it is an advantageous property of the minimum-trace datum definition for 2D networks 
that the resulting solution vectors for each network point fall in between those obtained 
with physically interpretable datums. One may expect that the analogous properties can be 
found for 3D networks; 
 
 



 
 
 
 

Appendix A: Properties of the minimum-constraints datums with fixed    
                       gravity centre (2D and 3D networks) 

Let us consider the following two options of minimum-constraints datum for a network without 
scale defect: 

0xS =M    minimum-trace datum 
0xS =N    datum with fixed gravity centre and orientation constraints  

                                other than those above, 

Fig.4   The tangential components of displacement vectors in a monitoring network

- in view of practical applications the advantageous property as above compensates for the lack
of physically interpretable reference base for orientation;
- the accuracy of the approximate co-ordinates, which can be improved in successive iteration
steps, is neither the cause nor adds to the shortcomings of the minimum-trace datum definition.
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       the indices b and c denote those network points which form the reference base (b) and     
       those which do not belong to this base (c); p – stands for positions,  α and β - stand for  
       orientation. 
 
Let  denote the length of the line joining the gravity centre C and a point  and σ - the 

standard deviation of obtained from the LS estimation  

iL̂ iP i,L̂

iL̂
 
PROPERTIES.  For any network point both  and L̂ L̂σ  are invariant to the choice of orientation 
constraints, i.e.   
 

                ,  )(L̂)(L̂ MiNi SS = )()( Mi,L̂Ni,L̂ SS σ=σ      i = 1,2,...,n                                 (A1) 
 

PROOF.  Applying a well-known similarity transformation (here – isometry transformation) – 
see Baarda (1973), we get  
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and carrying out a sequence of simple operations (including the reductions of mutually 
orthogonal factors), we obtain  
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Figure 5 illustrates these properties for a 2D network. The solution vector x  and the error 

bar  correspond to a datum having an orientation constraint dα = 0, where α is a bearing 

of the line . The analogous bounds but in the form of planes exist for 3D solution vectors 
and the standard ellipsoids.  
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     Fig.5 The distance (a) and its standard deviation iCP L̂σ (b) as invariant to the choice of    
             orientation constraint 
 
The properties (A1) can be extended upon the networks with scale deficiency.  

 

Let  denote respectively the radial and the tangential components of the solution vector 

  for the i–th network point.  
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and for 2D networks <   and  <                                              (A6) ∑
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Appendix B: Integrating the constraints equations in minimum-trace datum 
definition 

Let (x,y,z) =  denote the standard co-ordinates system on 

 where . Let D  denote the following Pfaffian system on 

)z,...,z,y,...,y,x,...,x( n1n1n1
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PROPOSITION 1      is not integrable. D
 
Proof.  Let us denote  
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It is easy to see that    
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We define  
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γ is an 8-form on n3R . 
 
By direct calculation we obtain  
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which is a polynomial of the 3rd degree. 
 

As γ does not vanish on any open subset of n3R , by Frobenius theorem (see Chern, 
Chen and Lam 1999) D  is not integrable (Q.E.D.). 

 
 
 
 

Appendix C: A specific property of the minimum-trace datum definition for  
                       2D networks 

 

Let  j = 1,2,...,n denote the solution vectors obtained with minimum-constraints datums 

each with the gravity centre fixed and the orientation constraint d
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tion vector obtained with minimum-trace datum. 
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Let   j = 1,2,...,n  and  t)j(N)j(N Txt = MM Tx= , where T is the (n×2n) rotation matrix, be 

the respective tangential components of the solution vectors.  
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It can be shown that (C2) holds true, if  
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Making use of (A3) we can write the condition (C3) in the form 
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and further on 
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Verifying that this condition is satisfied completes the proof. 
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