

Chair of Engineering Surveying and Adjustment Technique

3D Building Information Efficiently Acquired and Managed

Lothar Gründig, Christian Clemen

Chair of Engineering Surveying and Adjustment Techniques Institute for Geodesy and Geoinformation Science Technische Universität Berlin, Germany

bertin

Earthquake **Risk Analysis** and **Disaster Management** need accessible, reliable, actual and complete information on the **situation**.

Study area: Gathering **3d indoor** models of the **as-built situation** efficiently.

Application: The 3d indoor model provides the **spatial framework** to the Building Information Model (BIM) used for risk analysis (e.g. **structural statics**) or rescue planning (e.g. **escape route planning**)

Motivation: Practice of indoor mapping....

Department of Engineering Surveying and Adjustment Techniques

What if...

...measurements have been forgotten ...

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 3/41

Department of Engineering Surveying and Adjustment Techniques

What if...

...measurements disagree

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 4/41

Department of Engineering Surveying and Adjustment Techniques

...resulting walls do not aligne

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 5/41

Department of Engineering Surveying and Adjustment Techniques

What if typical mistakes occur during 3D as-builddocumentation ?

Staff has to return to the building for re-measuring.

Mistakes remain undetected, thus the resulting building geometry is wrong.

Department of Engineering Surveying and Adjustment Techniques

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 7/41

Department of Engineering Surveying and Adjustment Techniques

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 8/41

Topological Redundancy

berlin

Geometrical Redundancy

berlin

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 10/41

Plane-based parameterisation

berlir

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 11/41

Geometric normalization

Department of Engineering Surveying and Adjustment Techniques

Point based parameterization: 412 nodes -> **1236** coordinate values

Surfaced based parameterization: **104** d, **14** normal-vector values

The fewer "unknowns" the fewer measurements

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 12/41

The three main concepts of a surveying 3d data model

Department of Engineering Surveying and Adjustment Techniques

1. Observations and Constraints are considered to be the primary data

- Geometric properties of 3d entities are derived (estimated) quantities
- Redundant observations allow for checking and optimisation
- Observations are modelled stochastically

2. Surface-based (as apposed to point-based) parameterization

- Decreases geometric redundancy
- The fewer "unknowns" the fewer measurements

3. B-Rep Model with explicitly specified topology

 Topologic entities (nodes, edges, faces, solids) are used for surveying reasons (identification) and for geometric calculations i.e. derivation of point coordinates

Data Model - Workflow

berlin

The 3d-Designtool **Google SketchUp** is used for the sketch (Specification of the topologic primitives (node, edge, face) and topological structure)

Advantages:

- Free Software
- Easy to use for non-engineers
- Extensible (Ruby-Scripts)
- Open C/C++ API

Disadvantage:

- Not as restrictive as need for "real" CAD Model
- No surveying (measuring with geodetic instruments) capabilities

What do we have now?

Department of Engineering Surveying and Adjustment Techniques

 Topological structure of the (visible part of the) building

What do we have not?

- Topological consistent (CADlike) model
- Correct Geometry (Model is a sketch!)

Department of Engineering Surveying and Adjustment Techniques

What do we have now?

 Topological structure of the (visible part of the) building

What do we have not?

- Topological consistent (CADlike) model
- Correct Geometry (Model is a sketch!)

Added user support for **validation** of topology

- each node is connected to at least 3 edges -

Department of Engineering Surveying and Adjustment Techniques

What do we have now?

 Topological structure of the (visible part of the) building

What do we have not?

- Topological consistent (CADlike) model
- Correct Geometry (Model is a sketch!)

Added user support for **validation** of topology

- each edge is connected to at least 2 faces -

Department of Engineering Surveying and Adjustment Techniques

What do we have now?

 Topological structure of the (visible part of the) building

What do we have not?

- Topological consistent (CADlike) model
- Correct Geometry (Model is a sketch!)

Added user support for **validation** of topology

- each edge is an intersection of two non parallel planes -

Data Model - Workflow

berlin

Adjustment – Integration to data model

Department of Engineering Surveying and Adjustment Techniques

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 28/41

Measurement & Survey

Department of Engineering Surveying and Adjustment Techniques

Measurement & Survey

Department of Engineering Surveying and Adjustment Techniques

Integration to

- Data model
- Functional model (observation equation) *l* + *v* = *d_i* - (*n_i*, *p_{jkl}*)
 GUI

$$\overrightarrow{p_{jkl}} = \left[\left(\vec{n}_j, \vec{n}_k, \vec{n}_l \right)^T \right]^{-1} \left(d_j, d_k, d_l \right)^T$$

Measurement & Survey

Department of Engineering Surveying and Adjustment Techniques

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 31/41

Department of Engineering Surveying and Adjustment Techniques

Soft constraints are derived from the sketch

- A priori relative distances of parallel planes
- A priori relative angles between normals (in all combinations) Why?
 - Partial/selected improvement of geometric parameters

Data Model - Workflow

berlin

Adjustment – Input and Output

Department of Engineering Surveying and Adjustment Techniques

Christian Clemen - 3D Building Information Efficiently Acquired and Managed - TU Berlin - Slide 34/41

Post Adjustment Statistics:

- Test the general goodness of fit and detect whether mistakes occur in observations or the functional/statistical model.
- Can help to transform 2d floor planes into geometrically valid 3d models
- Check the geometric quality of existing models (KML, CityGML, IFC) with just a few (or more, redundant) measurements.

The three main concepts of a surveying 3d data model

Department of Engineering Surveying and Adjustment Techniques

1. Observations and Constraints are considered to be the primary data

- Geometric properties of 3d entities are derived (estimated) quantities
- Redundant observations allow for checking and optimization
- Observations are stochastically uncorrelated

2. Surface-based (as apposed to point-based) parameterization

- Decreases geometric redundancy
- The fewer "unknowns" the fewer measurements

3. B-Rep Model with explicitly specified topology

Topologic entities (nodes, edges, faces, solids) are used for surveying reasons (identification) and for geometric calculations i.e. derivation of point co-ordinates **Department of Engineering Surveying and Adjustment Techniques**

...Thank you for your attention !

