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ABSTRACT: 

 

Kalman filtering is a multiple-input, multiple-output filter that can optimally estimate the states of a system, so it can be considered a 

suitable means for deformation analysis. The states are all the variables needed to completely describe the system behavior of the 

deformation process as a function of time (such as position, velocity etc.). The standard Kalman filter estimates the state vector 

where the measuring process is described by a linear system. While, in order to process a non-linear system an optimized aspect of 

Kalman filter is appropriate. The main purpose of this research is to evaluate the Optimized Kalman filter as a non-robust method 

versus the IWST (Iterative Weighted Similarity Transformation) as a rigorous (also called robust) method. To satisfy this objective, 

first a detailed description on executing the Extended Kalman filter using the observation of angles and distances directly is provided. 

Later on, five sets of 2-D Total Station data include distances and angles are used to demonstrate the Optimized Kalman Filter. For 

detecting the deformation, single point test for every point is applied component by component as a local test. Later on, the findings 

from Optimized Kalman Filter are compared and evaluated against the results from IWST testing. In general, the outcome of Kalman 

filter algorithm is close to the preliminary results from IWST testing. The maximum and minimum differences in computed 

displacements are equal to 0.0002 and 0.002 in meters respectively. Finally, Kalman filter approaches, having some properties, are 

recognized as suitable techniques for deformation analysis. 
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1. INTRODUCTION 

1.1 Introduction 

In consequence of some factors either natural (e.g. water 

pressure and earthquake) or artificial (e.g. the weight of the 

structure itself), the deformable object is subjected to vary from 

normal position and dimension. Deformation monitoring refers 

to a regular observation of the alterations of a deformable 

object, whereas deformation analysis is the task of processing 

the available data from monitoring phase and detecting the 

magnitude and location of the displacement (Chrzanowski et al., 

2007; USACE, 2002). 

 

There are several recognized data processing techniques which 

are categorized into two main classes, i.e. Robust methods, such 

as IWST (Iterative Weighted Similarity Transformation) and 

Non-robust methods, such as Kalman Filtering and etc. (Tasci, 

2010).  The ordinary Kalman Filter combines all the available 

information to optimize the estimated state vector minimizing 

estimated error covariance where the measuring process is 

described by a linear system. In this study, among the various 

identified data processing techniques the suitability of the 

Optimized Kalman Filter (OKF) for deformation analysis when 

the observations are applied directly and the stochastic 

difference equation and/or the measurement equation are non-

linear is evaluated. In order to illustrate the OKF five sets of 2-

D Total Station data which includes distances and angles are 

used. 

 

For detecting the deformation, the single point test is applied as 

a local test. Being different from the ordinary single point test 

(Md Som et al., 2004; Lim et al., 2010) of the single point test 

which has been used in Ince and Sahin (2000), the single point 

test used in this study examine every components of the 

position of each points. For every component if 

 
0

(computed) (from table)1 , ,T F t f  , the relevant point is 

consider as unstable point (Ince and Sahin, 2000). 

 

 

2. KALMAN FILTER 

2.1 Ordinary Kalman filter 

In 1960, R.E. Kalman introduced his new approach which is a 

powerful optimal recursive process to filtering, prediction and 

smoothing the parameters which vary with time (Welch and 

Bishop, 2006; Cross, 1983). This approach was first used in 

electrical control systems (Kalman, 1960). It has also been used 

as one of the methods used in deformation analysis. The 

ordinary Kalman filter also called “Classical Kalman filter” or 

“Discrete Kalman filter” is a suitable tool for deformation 

analysis where the measuring process is able to be governed by 

a linear system. The main equations of ordinary Kalman filter 

are detailed in Aharizad and Setan (2011). The Optimized 

Kalman filter is recommended where the distance and angle 

measurements are directly processed, the process to be 

estimated and (or) the measurement relationship to the process 

is non-linear (Welch and Bishop, 2006). 

 

2.2 Optimized Kalman filter 

Assume the non-linear function f  relates the state at the 

earlier time step 1i   to the state at the present time step i  

(Welch and Bishop, 2001): 
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and the non-linear function h  relates the state ix  to the 

measurement iz : 

 

 

 ,
i i i

z h x v                                                                     (2) 

 

 

In practice the exact values of the noise 
iw  and iv  at each 

time step may not be known. So, the approximation of the state 

and measurement vector will be used without them as: 

 

 

 1, ,0i i ix f x u                                                          (3) 

 

 

and the non-linear function h  relates the state ix  to the 

measurement iz : 

 

 

 ,0i iz h x                                                                   (4) 

 

 

 

Then the EKF Prediction equations or the time update 

equations, and the filtering equations, also called the 

measurement update equations are given as in Eq (5) to Eq (9) 

in that order (Welch and Bishop, 2001): 
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Then the A, W, M and V matrices can be derived using partial 

derivatives as: 
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Note that for simplicity in the notation we do not use the time 

step subscript i  with the Jacobians A, W, M and V, even though 

they are in fact different at each time step. 

Where: 

ix  and iz = The state and measurement vectors at epoch i  

respectively; 

iu = The optional control input; 

iw = The process noise; 

iv = The measurement noise; 

ˆ
ix = The predicted state vector also called the a priori state 

estimate at epoch i ; 

ˆ
ix = The filtered state vector also called the a posteriori 

state estimate at epoch i ; 

ˆ ix
C = The a priori estimate error covariance at epoch i ; 

ˆ ix
C


= The a posteriori estimate error covariance at epoch i ; 

iQ = The process noise covariance at epoch i ; 

iG = The Kalman gain matrix at epoch i ; 

iR = The measurement noise covariance at epoch i . 

 

 

3. STATISTICAL TEST AND DEFORMATION 

DETECTION 

The single point test as the local statistical test is carried out for 

each point component by component at the significance level 

0.05  . The critical value is computed via Eq. (14) to Eq. 

(18) (Ince and Sahin, 2000; Aharizad and Setan, 2011). 

 

 

1, 1

1, 1

i i i i

i i i i

dx x x

dy y y

 

 

 


 
                                                      (14) 

 



 

 

   
2 2

1, 1, 1,i i i i i idv dx dy                                 (15) 

 

 

The zero and alternative hypotheses are: 
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Where 
1,i i

dx


 and 
1,i i

dy


= the x (East) and y (North) 

components of displacement vector at epoch i  respectively. 

1,

2
x
i id




 and 
1,

2
y
i i

d




= The variance of the difference vector 

for x and y components respectively; 
1i

xx 
 and 

i

xx = The variance of the x estimation at 1i   

and i  epochs respectively; 

1i

yy 
 and 

i

yy = The variance of the x estimation at 1i   

and i  epochs respectively; 

 

The computed 1,

x

i iT   and 1,

y

i iT  values are compared with 

critical value derived from t-test table based on the  and 

degrees of freedom
0f . For every point if either 

 1, 0
1 , ,

x

i i
T F t f


  or  1, 0

1 , ,
y

i i
T F t f


  , it is 

considered that the difference vector, 1,i idv  , is significant and 

the relevant point is segregated as unstable point. 

 

4. S-TRANSFORMATION 

The method of S-transformation is applied to avoid the problem 

of datum dependent displacement and to make the results 

comparable with the preliminary results from IWST testing. For 

this purpose the five control stations (point 1 to point5) are 

taken into account as the datum points and partial minimum 

trace technique is performed (Setan, 1995). So, the relevant 

components of matrix W (Eq (19)) to the five mentioned 

control stations are all one. 
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Generally, 
TG  in Eq (19) for 2-D network is defined as: 
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Where first two rows of 
TG  define the translation along x and 

y axes respectively. The third and fourth rows are related to the 

rotations around the z axis and scale of the network respectively. 

Since, in this study the observed data includes distance and 

bearing the third and fourth rows are eliminated (Setan, 1995). 

 

In Eq (3.33), n represents number of stations and: 
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5. DATA ANALYSIS AND RESULTS 

5.1 Total Station Data 

In this study, five sets of Total Station data which were 

acquired from monitoring of a concrete block subjected to load 

is used in the deformation process directly. A micro 

triangulation network consists of 12 stations, 5 reference points 

and 7 object points, was established inside a laboratory. Points 

1 to 5 were located within an area of about 6x4 m2 as the 

reference points (Figure 1). The object points, points 6 to 12, 

were sited on one facade of the block (Figure 2). A 2-D 

triangulation measurement of distance and bearing were done 

using Sokkia Set3 Total Station (Md Som et al., 2004). 

 

As data includes distances and azimuths the system models 

used as primary and secondary models will be non-linear. So, 

Optimized Kalman filter approach has to be used to analyze the 

data and compute the deformation vector.  

 



 

 
Figure 1.  Micro triangulation monitoring network set up in 

the laboratory (Md Som et al., 2004) 

 

 

 
Figure 1.  Object points location on the facade of conceret 

block (Md Som et al., 2004) 

 

 

5.2 Data Processing Steps 

The overall of data processing is fulfilled in four main steps: 

 

1. Kalman filter executing; 

2. Deformation detection using Kalman filter 

outcomes directly; 

3. S-transformation; 

4. Deformation detection using the outcomes of S-

transformation phase. 

 

The Kalman filter step by itself contains six modules: 

 

1. Observation vector ( ib ) introducing (Eq. (23)); 

2. State vector  ( iX ) definition (Eq. (24)); 

3. Observation (primary) models definition (Eq. 

(25) to Eq. (28)); 

4. Dynamic (secondary) models definition (Eq. 

(29) to Eq. (32); 
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Distance relates to position model: 
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Bearing relates to position model: 
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Acceleration relates to velocity models: 
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Relates position at epoch i to epoch i-1: 
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Relates velocity at epoch i to epoch i-1: 
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5. Design matrix (A) and state transition matrix 

(M) derivation or Primary and Secondary models 

linearization; 

 

Matrix A is computed by first order differentiation of primary 

model with respect to elements of state vector (Eq. (10)). 

Matrix 
1,i i

M


 is derived by first order differentiation of 

secondary model with respect to elements of state vector (Eq. 

(12)) and secondary model is changed into matrix form 
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6. Kalman initial value computation; 

7. Prediction step (Eq. (5) and Eq. (6)); 

8. Filtering step (Eq. (7) to Eq. (9)). 

 

 

5.3 Results 

Due to the page limitation in this article, only the results of first 

two epochs are shown in this article. Table 1 shows the total 

displacement of each point before applying the S-

transformation (case A) along with the point status resulting 

from the statistical test phase. Whereas, the outcome of test 

statistic and deformation analysis after implementation of s-

transformation (case B) that identifies whether a point remains 

stable or not is given in Table 2. The results shown in Table 2 

are comparable with the preliminary results of IWST testing 

which are represented in Table 3. 

 

Table 4 and Table 4 stand for the details of single point test for 

both cases ( case A and case B) respectively. 

 

 

 

Station 

Kalman filter 

(before S-transformation) 

(A) 

Displacement status 

1 0  m stable 

2 0.000001  m stable 

3 0.0001  m stable 

4 0.0001  m stable 

5 0.0001  m stable 

6 0.0009  m stable 

7 0.0026  m moved 

8 0.0043  m moved 

9 0.0048  m moved 

10 0.0014  m moved 

11 0.0008  m stable 

12 0.0062  m moved 

 

Table 1.  Displacement and point status before applying the S-

transformation  

 

 

Station 

Kalman filter 

(after S-transformation) 

(B) 

Displacement status 

1 0.0001  m stable 

2 0.0001  m stable 

3 0.0004  m stable 

4 0.0001  m stable 

5 0.0003  m stable 

6 0.0012  m moved 

7 0.0028  m moved 

8 0.0044  m moved 

9 0.0049  m moved 

10 0.0016  m moved 

11 0.0008  m moved 

12 0.0064  m moved 

 

Table 2.  Displacement and point status after applying the S-

transformation 

 

 

Station 
IWST testing 

Displacement status 

1 0.0014  m stable 

2 0.0008  m stable 

3 0.0008  m stable 

4 0.0007  m stable 

5 0.0006  m stable 

6 0.0010  m moved 

7 0.0025  m moved 

8 0.0041  m moved 

9 0.0046  m moved 

10 0.0012  m moved 

11 0.0012  m moved 

12 0.0044  m moved 

 

Table 3.  Preliminary results of IWST testing 



 

Station 

Test statistic ( case A) 
Critical 

value 
Status 

x 

component 

y 

component 
1.6762 stable 

2 0.000001 0.000001 1.6762 stable 

3 0.0072 0.0059 1.6762 stable 

4 0.000001 0.0055 1.6762 stable 

5 0.0317 0.0126 1.6762 stable 

6 1.4741 0.6464 1.6762 moved 

7 6.6794 6.2047 1.6762 moved 

8 14.8087 17.2527 1.6762 moved 

9 9.5884 25.8852 1.6762 moved 

10 1.0381 1.9506 1.6762 moved 

11 0.9712 0.5818 1.6762 moved 

12 0.8108 2.7692 1.6762 moved 

 

Table 4.  Details of single point test (case A) 

 

 

Station 

Test statistic ( case A) 
Critical 

value 
Status 

x 

component 

y 

component 
1.6762 stable 

1 0.0121 0.0103 1.6762 stable 

2 0.1059 0.0930 1.6762 stable 

3 0.0039 0.0099 1.6762 stable 

4 0.1079 0.0056 1.6762 stable 

5 0.2026 0.7036 1.6762 stable 

6 6.3055 15.0574 1.6762 moved 

7 15.1628 106.34 1.6762 moved 

8 41.2896 461.4265 1.6762 moved 

9 35.5488 413.0073 1.6762 moved 

10 2.8327 220.48 1.6762 moved 

11 2.9140 34.1443 1.6762 moved 

12 0.8786 2.9173 1.6762 moved 

 

Table 5.  Details of single point test (case B) 

 

 

Additionally, the state vector includes the velocity components. 

So the variation of displacement is computed in both x and y 

directions. Table 6 gives the idea about position variations 

between first and second epochs in x and y directions (Vx and 

Vy in that order). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

station Vx (m/s) Vy (m/s) 

1 assumed as fix  assumed as fix 

2 -0.00022 0.00023 

3 -0.00025 0.00027 

4 -0.00021 0.00029 

5 -0.00009 0.00015 

6 0.00003 0.00002 

7 0.00017 -0.00030 

8 0.00033 -0.00060 

9 0.00026 -0.00075 

10 0.00001 -0.00009 

11 0.00001 0.00033 

12 0.00038 -0.00115 

 

Table 6.  Rate of variation 

 

 

6. CONCLUSIONS 

The main objective of this study was the evaluating of 

Optimized Kalman Filter implementation and suitability in 

deformation analysis against a rigorous method (IWST). To 

satisfy this objective five set of 2-D data was utilized to execute 

Kalman Filter in kinematic mode. 

 

The results of Kalman Filter approach are verified with the 

preliminary results of IWST. Being different from IWST 

method of Kalaman Filtering, Kalman Filtering combines all 

the information to estimate the desired parameters. A simple 

single point test can be applied component by component to 

detect both the stable and unstable points. The elements of the 

state vector are position and the variation of the position. Hence, 

Kalman Filtering is suitable for study the behavior of the 

deformation for investigation of catastrophes.  
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