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ABSTRACT: 

 

System identification is one main task in modern deformation analysis. If the physical structure of the monitored object is unknown 

or not accessible the system identification is performed in a behavioural framework. Therein the relations between input and output 

signals are formulated on the basis of regression models. Artificial neural networks (ANN) are a very flexible tool for modelling 

especially non-linear relationships between the input and the output measures. The universal approximation theorem ensures that 

every continuous relation can be modelled with this approach. However, some structural aspects of the ANN-based models, like the 

number of hidden nodes or the number of data needed to obtain a good generalisation, remain unspecified in the theorem. Therefore, 

one faces a model selection problem. 

In this article the methodology of modelling the deformations of a lock occurring due to water level and temperature changes is 

described. We emphasize the aspect of model selection, by presenting and discussing the results of various approaches for the 

determination of the number of hidden nodes. The first one is cross-validation. The second one is a weight deletion technique based 

on the exact computation of the Hessian matrix. Finally, the third method has a rigorous theoretical background and is based on the 

capacity concept of a model structure. The results of these methods are compared from the viewpoint of generalisation. 

 

 

 

1. INTRODUCTION 

In a modern approach the monitored object is regarded as a 

system (Welsch et al., 2000). The loads acting on the object 

represent the input to the system and its reaction by deformation 

the output. The dynamic deformation modelling aims at the 

time-related description of the causal chain consisting of the 

input, the system and the output. 

In engineering geodesy the properties of the monitored system 

are typically derived from synchronous observations of the 

input and output measures in the framework of the so called 

experimental system identification. The modelling equations 

describing the system properties can be formulated based on 

physical principles or in a purely mathematical way. This paper 

addresses the latter, the so called behavioural approach. Therein 

the relationship between the systems input and output is 

expressed by mathematical functions. The coefficients of these 

functions describe the object properties but have no or very 

restricted physical meaning. The generality of the models 

structure makes it applicable to a large number of different 

object types.  

The traditional way of system identification in the behavioural 

approach is to model the actual deformation state yk as a linear 

combination of present and past values of the loads xk,…, xk−q 

respectively, and past deformation states yk−p: 
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The characteristics of the monitored object are captured by the 

coefficients ai and bj, with i = 0,…, p, j = 1…q. 

In every model structure derived from (1) the parameters p and 

q that define the order of the model need to be chosen prior to 

the estimation of the coefficients. Therefore one faces at first a 

problem of model selection.  

This paper treats the problem of model selection in the more 

general framework of nonlinear model structures defined by 

Artificial Neural Networks (ANN). This model structure is used 

here because it includes, as shown by Neuner and Kutterer 

(2010), all the traditional modelling strategies, like in eq. 1.  

The main aspects related to system identification by means of 

ANN are presented in the chapter 2. Three strategies for solving 

the model selection task will be presented in the chapter 3: the 

cross-validation approach, the saliency of weights method and a 

theoretically founded approach based on the concept of model 

capacity. The results obtained for the modelling of the 

deformations of a lock due to influences of water level changes 

and temperature with these strategies will be described in the 

last chapter of the paper. 

 

 

2. ARTIFICIAL NEURAL NETWORKS 

 

ANN is a model structure with processing units, so called nodes, 

organised in layers. The minimal configuration of a meaningful 

ANN consists of an input and an output layer. The number of 

nodes in these layers corresponds to the number of observed 

acting loads and to the number of the deformation components 

respectively. Therefore, these layers can be considered as fixed 

with respect to the model’s structure. Further processing units 

can be included in the model in so called hidden layers. The 

number of hidden layers and the number of units contained in 

them are variable with respect to the model’s structure and have 

to be set-up in accordance with the modelling task. 



 

 

The nodes of subsequent layers are connected. The strength of 

the connection between the kth node in layer L and the ith node 

from the previous layer (L-1) is expressed by the weights wki
(L). 

These are the unknown parameters of the model that need to be 

estimated from the observed data. 

In this paper only structures of ANN are considered where the 

information processing is done in just one direction through the 

network. Such structures are called feed-forward networks. The 

use of such network architectures implies that phase differences 

between the input and deformation measures are calculated 

prior to the modelling with ANN and therefore, that the input 

and output data series are aligned in time. 

The model structure described by an ANN is exemplified in eq. 

2. The output y1
(2) from a network consisting of NI = 2 input 

units, NH units organised in one hidden layer and NO = 1 output 

unit results according to: 
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with: 

 (L) – the activation function of the units in the Lth-

layer, L = 1, 2, 

 biL – the bias term of the ith unit in the Lth layer, 

 yi
(L) – the output from the ith unit in the Lth layer, 

 xi – the ith observed acting load. 

Various activation functions are available from technical 

literature (i.e. Haykin, 1999). In the present study we have 

considered one of the most common ones: the tanh-function and 

the linear function. While the first one is a non-linear sigmoidal 

function that maps its arguments into the domain [-1, 1], the 

linear function leaves the arguments unchanged. 

The main reason for treating the model selection problem in the 

framework of ANN is given by the theorem of universal 

approximation. This theorem states that networks with one 

hidden layer, sigmoidal activation of the units in that hidden 

layer and linear activation of the output layer units are able to 

approximate every continuous function from one finite 

dimensional space to another to any desired degree of accuracy, 

provided a sufficient number of hidden units (Hornik et al., 

1989). Therefore, we have restricted this study to network 

architectures that contain only one hidden layer and meet the 

activation conditions of the universal approximation theorem. 

The only task remained to be solved for the definition of the 

model structure is the specification of the number of hidden 

units. We will address this problem separately in the next 

chapter. 

For now, let’s assume a fixed model structure and focus on the 

estimation of the unknown weights wki
(L) and biases biL. This is 

done on the basis of the observed input and output data by 

minimising a loss function Eav. Typically, this loss function is 

chosen to be the sum of squared differences between computed 

and observed outputs over all samples N and all output units NO: 
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Due to the high non-linearity of the ANN model (see eq. 2) the 

equations obtained from differentiation of the loss function (3) 

with respect to the unknown weights are still non-linear. 

Therefore, the estimation problem cannot be solved with closed 

formulas. Several methods are available for solving the 

minimisation problem. Upon them the gradient-based steepest 

descend method is widespread. This method uses only the 1st 

order derivative of the loss function to approach the minimising 

solution. In this study, we use the Levenberg-Marquardt 

algorithm (LM-algorithm) to obtain the estimates of the 

unknown parameters. Compared to the aforementioned method 

the LM-algorithm includes a 2nd order approximation to the loss 

function. It has therefore higher convergence rates and leads to 

more precise results. The second order approximation requires 

the computation of the Hesse matrix H. This is especially for 

large network structures a cumbersome computational task. 

Therefore, the LM-algorithm uses an approximation of the 

Hessian based on the Jacobi matrix J. In an iterative process the 

weights are changed in accordance to the rule: 
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with: 

 µ - regularisation parameter that insures the regularity 

of the approximation, 

 I - identity matrix and 

 E(w) - the gradient of the loss function. 

In this study we have chosen a value of 0.01 for the 

regularisation parameter. This small value gives a high 

contribution of the quadratic form - the approximation of the 

second order - to the change of the weights. 

The aspects briefly presented in this chapter point out that there 

are theoretically well-founded methods for solving ANN models, 

provided that the model structure is fixed. While the theorem of 

universal approximation states the sufficiency of one hidden 

layer for good approximation properties of the network, it 

doesn’t specify the exact number of the units contained in that 

hidden layer. It not even guarantees that this number is finite. 

Therefore, one still faces a problem of model selection prior to 

the estimation task. The solution to this problem is object of 

numerous research activities of the last years (Anthony and 

Bartlett, 2009). However, a unique solution has not been given 

yet. We will address this problem in the next chapter and 

present available methods to find the suitable number of nodes 

in the hidden layer. 

 

 

3. MODEL SELECTION 

The theorem of universal approximation guarantees the 

possibility of an exact projection of the input data onto the 

deformation signals. In practical applications the observed data 

is noisy. Therefore, perfect approximation of the deformations 

from the influencing factors cannot be the main scope of a 

modelling activity. Such an approximation would assume the 

storage of noise in the model coefficients. Rather than this, a 

model should capture the real functional relationship existing 



 

 

between the acting loads and the deformation signals on the 

basis of the observed data. Thus, the model including the 

estimated parameters will approximate well the observed 

deformation and will perform reasonable well on new data, i.e. 

for prediction tasks, at the same time. The latter aspect is called 

the generalisation property of a model. Obviously, an 

appropriate model is characterised by its ability to approximate 

and to generalise well. 

 

 

3.1 Cross-validation 

 

 

A good approximation property doesn’t imply also a good 

generalisation property. A model structure that is chosen to be 

too complex in relation to the real functional relationship 

captures in its free coefficients the noise contained in the data. 

This occurrence is called overfitting. Such a model will perform 

well in approximating the data used for the estimation of its 

parameters but extremely poor on new data. 

These facts are basic for the cross-validation, an empirically 

motivated method for selecting a suitable number of hidden 

nodes in an ANN. The methodical approach is to divide the 

available data set into two subsets: The first data set is called 

the training set and is used for estimating the weights of a 

certain model structure with a specified number of hidden units. 

Subsequent, the input data of the second subset, called the test 

data, is fed into the ANN which runs in the prediction mode. 

The discrepancy between the computed and the observed data 

of the second subset, expressed as mean square error (mse), is a 

measure of the generalisation property of the network. The 

relationship between training and test data is usually chosen to 

be 70% to 30%. 

In the application of the cross-validation method one starts with 

a small model structure which is stepwise increased by adding 

hidden units (s. figure 1). For every structure the approximation 

and generalisation errors are computed as mse on the basis of 

the training and the test data respectively. It is expected, that the 

approximation error decreases continuously with increasing 

complexity of the model. At first, the generalisation will also 

improve with increasing number of hidden nodes. However, 

beyond a certain complexity the model will have a poor 

generalisation performance although the number of hidden 

nodes is still increasing. This point marks the structure where 

the model begins to overfit the training data. The number of 

hidden units corresponding to the minimum of the 

generalisation error determines the optimal model structure and 

represents the solution to the model selection problem. 

 

 

 
 

Figure 1.  Cross-validation 

 

3.2 Saliency of weights 

 

 

In linear regression problems one faces a model selection 

problem as well. A typical approach to this task is to start with a 

large model structure which is sequentially thinned out by 

assessing the significance of single regression coefficients. This 

is done by a significance test that uses in case of normally 

distributed data the ratio between the model coefficient and its 

variance as a test value. In the linear case there is no problem to 

build this test value, because the variance of the coefficients 

results from the estimation process. This approach cannot be 

applied unaltered to ANN models due to their high degree of 

non-linearity. However, the concepts used in the linear case can 

be transferred to the ANN case in order to evaluate the relative 

importance – the saliency – of single weights of the ANN. 

As in the linear case one starts with a relatively large network 

and removes sequentially weak connections between the units 

until a reasonable network architecture is obtained. The main 

characteristic of the method is the evaluation of the relative 

importance of the single weights. Due to the fact that the ANN 

is trained by minimising a loss function (s. chapter 2) it is a 

natural way to use this function for the definition of the relative 

importance of the weights. The saliency of a weight is defined 

as the change in the loss function induced due to its removal 

from the model structure. 

For the direct identification of the weight with the lowest 

saliency the parameters of the complete model structure have to 

be estimated first. Then, in a second step each weight is 

removed temporarily from the model, the reduced model is 

trained and the corresponding change in the loss function is 

stored. The weight with the lowest contribution to the change of 

the loss function is removed permanently. However, this direct 

approach is computation intensive and thus, especially for large 

networks very time consuming. 

Therefore, a different way of evaluating the saliency of weights 

is presented in Bishop (2008). The change of the loss function 

Eav as consequence from the removal of a weight wi is given in 

a second order approximation by: 
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In eq. (5) Hij denotes the elements of the Hesse-matrix H. The 

removal of a weight is formal equivalent to a change of that 

weight wi = -wi. For a trained network the first summand in eq. 

(7) can be neglected. Thus, the variation of the loss function is 

determined mainly by the elements of the Hessian. If the non-

diagonal terms of H are discarded, a usual procedure in 

evaluating the Hessian, the change of the loss function 

simplifies to: 
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If a weight wi is removed from the model structure the loss 

function increases according to eq. (6) approximately with 

Hii∙wi
2 / 2. Thus, this quantity measures the saliency of the 

specific weight wi. 



 

 

3.3 Model capacity 

 

 

From functional point of view the model structure defined by an 

ANN (see i.e. eq. 2) corresponds to a family of functions f(x, ) 

that maps the input x with an unknown distribution P(x) onto 

the output y. The true conditional distribution P(y | x) is also 

unknown. Therefore, the parameters  need to be estimated 

from observed pairs of data (xi, yi), with i = 1,..., N. The 

estimation process is based on the minimisation of an empirical 

loss function:  
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This general structure of the loss function remains unaltered 

with respect to the one used for the approximation in LM-

algorithm (eq. 3). The measure described by eq. 7 is the 

empirical risk. Good generalisation properties are obtained for a 

model if it minimises not only the empirical risk but also the 

true risk, defined as the expected value of the loss function: 
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Eq. 8 cannot be evaluated because the joint distribution P(x, y) 

is unknown and only a finite sample of data is available from 

the observations. However, there are some upper bounds on true 

risk available for different model structures. All of them are 

based on the work of Vapnik and Chervonenkis (1971). In case 

of an unbounded nonnegative loss-function and some weak 

assumptions on the data distribution, like that of small 

probability for observing large values of the loss function, the 

following bound on the true risk holds with probability (1-): 
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In eq. 9 h denotes the Vapnik-Chervonenkis dimension (VCdim) 

of the model structure. This measure is characteristic for a 

certain model structure. Its nature will be briefly explained in 

the following. This can be done more comprehensive if we 

leave for short the framework of regression and address 

problems of classification. In consequence, the family of 

functions f(x, ), with    is a set of indicator functions that 

map the input onto {0, 1}. A sample x1, x2, ...,xn is said to be 

shattered by the function set f(x, ) if for every possible 

separation there exist an    such that the function f(x, *) 

classifies error-free the data. The maximum number of samples 

that are shattered by a function set f(x, ) defines the VCdim of 

the function set. In a binary classification task n samples can be 

separated in 2n ways. Therefore, h equals max(n) for which the 

function set separates error-free the samples. The VCdim is a 

measure of the capacity of a model. 

For exemplification the VCdim of the linear discriminator 

function set is analysed in figure 2 for a two dimensional input 

space. 

 

 

 
 

Figure 2.  VCdim of the linear discriminator 

 

As can be seen from the first 2 rows in figure 2 the linear 

discriminator performs all possible classifications of a sample 

size of N = 3. Only 4 cases are exemplified in figure 2. The 

remained 4 cases are obtained by switching the white and black 

circles. For a sample size N = 4 the linear discriminator is not 

able anymore to perform all possible separations. The 3rd row in 

figure 2 illustrates a case when the linear discriminator fails. 

Therefore its VCdim is h = 3. 

Returning to the regression framework one faces the problem of 

extending the concept of VCdim, which is obviously a 

combinatorial measure, to sets of real functions f(x, ). This is 

accomplished by conversion of the real functions into indicator 

functions. For each x these indicator functions specify whether 

f(x, ) exceeds or is below a certain level : 
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The exact VCdim is known exactly only for a few ANN 

structures (see i.e. figure 2). Vapnik et al. (1994) proposed a 

method for estimating the VCdim from experimental data. This 

method is based on the maximum deviation of error rates 

observed on two independent data sets (x, y)1 and (x, y)2. 

Closed formulas were derived for the expectation of this 

maximum deviation. The latter is a function of VCdim and the 

data length n. Therefore, calculating the maximum deviation of 

error rates on two data sets of different lengths n1, n2, ..., nk = N, 

one is able to chose an appropriate value of h such that the 

empirical variation of the maximum difference fits optimally, i.e. 

in the L2-norm sense, the derived closed formula.  

With the VCdim of the model structure estimated in accordance 

to the method outlined above and the empirical risk Remp 

obtained from the network training the upper bound (9) for the 



 

 

true risk can be evaluated. It is expected, that the ANN structure 

that leads to the least upper bound (9) will exhibit the best 

generalisation properties from the set of possible model 

structures.  

 

 

4. EXAMPLES OF MODEL SELECTION 

The methodologies presented in the former chapters were used 

to perform a system identification of a lock situated in Uelzen. 

This lock was object of numerous research works; especially at 

the Geodetic Institute of Hanover (i.e.: Neuner, 2008; Boehm 

and Kutterer, 2006). The deformation model of the lock was 

already discussed in a large number of publications related to 

this research work. Therefore it will not be repeated here. 

The deformation measurements were performed with an 

inductive measuring plummet system that was mounted in the 

tower of the tail-bay. The sampling interval is 10 min. The 

analysed data covers a time span of 4 days. The main acting 

loads causing the deformation: the change of water level in the 

chamber due to the activity of the lock and the temperature were 

recorded synchronous to the deformation. The analysed data is 

presented in figure 3. 

 

 

 
 

Figure 3.  Analysed data 

 

The phase differences between the deformation and the acting 

loads were computed with methods of time series analysis. 

Afterwards the time series were aligned in time prior to their 

modelling with ANN. The phase difference between the time 

series in figure 3 is already removed. 

The causal relationship between the system’s input and output 

is obvious from figure 3. Although one might assume a linear 

relationship between the two components of the causal chain 

this is not the case. As described in Neuner (2008) the direction 

of the deformation changes during the filling and the emptying 

of the lock. Furthermore, the system’s reaction to the changes of 

water level is also temperature dependent. Therefore, a non-

linear model structure based on ANN is chosen for the system 

identification. The feed-forward ANN used here contains two 

input units corresponding to the abovementioned acting loads. 

The single output unit corresponds to the deformation. The 

network weights were estimated using the LM-algorithm.  

The main task of this study is to assess the number of units in 

the hidden layer that leads to a model structure with good 

generalisation properties. For this purpose the 3 methods 

described in chapter 3 were used. 

For cross-validation the data set was separated into two subsets: 

the training data set covering a time span of three days and the 

test data set covering one more day. The training and testing 

procedures were performed on model structures with 1, 2, 3, 5 

and 10 hidden units. The maximum number of 10 was set in 

accordance with the number of samples of the training set such 

that the weights of the resulting model can still be determined. 

The results obtained from the training and the testing of the 

ANNs with the LM-algorithm are shown in figure 4. 
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Figure 4.  Results of cross-validation procedure 

 

The empirical variation of the mse with respect to the number of 

hidden units agrees well with the expected one described in 

chapter 3.1. The mse computed from the training data is smaller 

than the one calculated from the test data and decreases at the 

highest rate between the structures with 1 and 2 hidden units. 

The minimum is attained in case of the structure with 5 hidden 

units. Therefore, as a result of cross-validation it is expected 

that this model has the best generalisation properties. 

The saliency of weights method requires as described in chapter 

3.2 the computation of the Hessian matrix H. This contains the 

2nd order derivations of the loss function Eav with respect to the 

weights. Several elements of the Hessian were rigorously 

calculated by differentiation of Eav given in eq. 2 with (1) as the 

tanh-function and (2) as the linear function. This was 

accomplished for all model structures with 1, 2, 3, 5 and 10 

hidden nodes. All training samples are included in the 

numerical computation of the elements.  

For comparison reasons with the cross-validation the properties 

of the Hessian and the saliencies of weights for the structure 

with 5 hidden nodes are presented here. The condition of the 

resulting Hessian can be assessed in figure 5 that contains the 

eigenvalues obtained from the single value decomposition of H. 

 

 

 
 

Figure 5.  Eigenvalues of the Hesse matrix H 



 

 

The Hessian has one dominant eigenvalue. The relation between 

the maximum and the minimum eigenvalue, the conditional 

number of the matrix, is 2,77∙10-5. This doesn’t allow a sharp 

classification of the model as good or bad conditioned. 

However, in further studies performed with the estimated Hesse 

matrix in spite of the small conditional number a stable 

calculation of the inverse was possible. Thus, a stable solution 

to the approximation problem could be obtained with the 

Newton method. From this point of view the model choice after 

cross-validation seems to be appropriate. 

The saliency of the weighting coefficients of the ANN structure 

with 5 hidden nodes was calculated due to the availability of the 

entire Hessian according to the last summand in eq. 5.The use 

of the approximating eq. 6 produces only small differences 

between the saliency coefficients.  
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Figure 6.  Saliency of weights  

 

The obtained saliency coefficients are plotted in figure 6. There 

is a total amount of 21 coefficients each of them corresponding 

to a weight of the ANN. The first 3 groups of 5 coefficients 

correspond to the weights of the connection between one input 

node and the 5 hidden units. The last 6 coefficients refer to the 

connections of the output node with the 5 hidden nodes and the 

bias node respectively. At first, the focus of the analysis lies on 

the last 6 coefficients. Deleting one of these connections means 

that the respective hidden node will have no contribution to the 

computed output from the network and thus, it can be removed 

from the structure. Figure 6 reveals that at least 3 connections, 

including the one to the bias, have a high saliency. The other 

three connections are characterised by relatively small but not 

necessary neglectable coefficients. Therefore, the method of 

saliency of weights leads to a plausible result that confirms the 

one obtained by cross-validation. Though, notice that the 

saliency of weights method refers only to the approximation 

capabilities of the model structure. It doesn’t refer to its 

generalisation properties.  

The generalisation property of a model structure is optimised 

using the theoretical concept of model capacity. Using the 

method outlined in chapter 3.3 the following values were 

obtained for the VCdim parameter h in case of network 

structures with 2, 3, 5 and 10 nodes: 

 

 

Number of hidden nodes 2 3 5 10 

Estimated h 4 5 8 12 

 

Table 1.  Estimated values for h  

 

Using the values of the minimum empirical risk resulting from 

the training process with the LM-algorithm the upper bound for 

the true risk was calculated for the 4 structures of the ANN 

given in Table 1 using eq. 9 with a probability error of  = 5%. 

The lowest bound was obtained for the ANN with 5 hidden 

nodes. This result agrees very well with the one empirically 

obtained by cross-validation.  

 

 

5. SUMMARY 

This paper refers to the non-linear system identification by 

means of ANN. It is focused on the model selection task that 

consists in the specification of an adequate number of hidden 

nodes that lead to models with good approximation and 

generalisation properties as well. Three methods for model 

selection were presented: the empirical motivated cross-

validation, the saliency of weights method and the theoretically 

well founded one based on the capacity of the model described 

by the VCdim measure. The 3 methods were applied for the 

system identification of a lock and leaded to a good agreement 

between the obtained results. The identified model structure 

consists of one hidden layer containing 5 nodes.  
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