IAG / FIG / UNGGIM / UNICG / PhilGEGS

Reference Frame in Practice

Manila, Philippines 21-22 June 2013

IGS Services & Other Initiatives

Chris Rizos UNSW, Australia President IAG

The IAG & FIG promote the adoption of the ITRF by all nations & users as the basis for fundamental national or regional datums, and are committed to improving the geodetic infrastructure, encouraging data sharing, and to conduct outreach & education activities.

Outline ...

- Geodesy's contribution to Science & Society
- Geodesy: The International Structure
- The Global Geodetic Observing System
- The International Terrestrial Reference Frame
- The International GNSS Service

Geodesy's Contribution to Science & Society

International Association of Geodesy A Constituent Association of the IUGG

... advancing geodesy ...

Dual Function of Geodesy...

 Geodesy is the foundation for the representation of horizontal & vertical position (& its variation) in global Despite differences in mission requirements of Geodetic Science & Geodetic Practice, the geodetic infrastructure, datums, GNSS technology & methodology can now support both ... and geometry/gravity interactions.

Geodesy's Scientific Drivers

- **Complexity** of the "System Earth" requires increasingly sophisticated and integrated observing systems & modelling, in order to detect the signatures of **Global Change and Earth System dynamics**.
- Helplessness in the face of natural disasters reminds us that our knowledge of the Earth's complex system is very limited and we have low predictive capability.
- Capability of "Modern Geodesy" approaches level that can readily support geoscience (e.g. accuracy, reliability) and geospatial applications (e.g. ease-of-use).

Climate Change:

- How much is sea level changing here?
- How is the atmospheric circulation changing?
- How is the water cycle changing?
- How do the Earth, Atmosphere and Oceans exchange energy?

Geohazards:

- Is stress building on this fault?
- Has a tsunami wave been detected?
- Is there an impending volcanic explosion?
- What is the ground & structural deformation?

Environmental:

- What is the mesoscale ocean circulation?
- What is the pattern of the atmospheric water vapour?
- How is the pattern of ground water & soil moisture changing?
- What is the volume of ice being lost in the Arctic/Antarctic?

Modern Geodesy's Capabilities

Geodesy **now** defined in terms of the following *capabilities*:

- 1. Determination of precise global, regional & local 3-D (static or kinematic) *positions on or above the Earth's surface.*
- 2. Mapping of *land*, sea & ice surface geometry.
- 3. Determination of the Earth's (time & spatially) *variable gravity field.*
- 4. Measurement of *dynamical* (4-D) phenomena:

- <u>Solid Earth</u> (incl. cryosphere): surface deformation, crustal motion, GIA, polar motion, earth rotation, tides, water cycle, mass transport, etc.

- <u>Atmosphere</u>: refractive index, T/P/H profiles, TEC, circulation, etc.
- <u>Ocean</u>: sea level, sea state, circulation, etc.

Geospatial Industry Drivers

- An insatiable demand for **geospatial data** is driving the development of new mapping technologies & products...
- A greater reliance on accurate, transnational geodetic datums to support interoperability of geospatial data...
- An ever increasing need for accurate, reliable and available positioning capability to support many geospatial functions...
- GNSS technology has revolutionised navigation, surveying & geodesy...

The Value of Geodesy to Society

- Fundamental geoscience... solid earth geophysics, atmospheric, cryospheric & oceanographic processes, hydrology.
- Global Change studies... climate change, water cycle & mass transport, sea level rise, mesoscale circulation, GIA, polar... requiring long-term monitoring.
- Geohazard research & disaster response... seismic, volcanic, landslip, storms, flooding, tsunami, space weather... early warning systems.
- Geodetic reference frames... *ITRF, national datums, SDI, gravity, timing...* national mapping & precise positioning.
- Engineering... PNT, atmospheric remote sensing, georeferencing sensor platforms, POD... operational & engineering geodesy.

Geodesy: The International Structure

From "Mitteleuropäische Gradmessung" to IAG (1)

- 1862: Mitteleuropäische Gradmessung (Central European Arc Measuremer
- 1867: Europäische Gradmessung (European Arc Measurement)
- 1886: Internationale Erdmessung (International Geodetic Association)
- 1917: Reduced Association of Neutral States (during WWI)
- 1922: IUGG Section of Geodesy (after IUGG establishment in 1919)
- 1930: IUGG Association of Geodesy (renamed in 1930)
- 1946: IUGG International Association of Geodesy (effective after reorganisation)

Hermann Drewes

Johann Jacob Baeyer

Georges Perrier 1922-1946

Friedrich Robert Helmert

Hendricus Gerardus van de Sande Bakhuyzen

Pierre Tardi 1946-1960

From "Mitteleuropäische Gradmessung" to IAG (2)

- Cross-border, regional, & international cooperation
- Desire for "practical outcomes", to share data & expertise, to make better maps, through improved Geodetic Practice
- Integrated "science program", close link of theory & practice
- Institutionalised program, including permanent secretariat, long-term government support, etc
- Communications, conferences, publications, etc
- Standards & practices, datums, technology, etc
- After WWI, greater emphasis on Geodetic Science, and less emphasis on inter-governmental cooperation
- Stasis between WWI & WWII...new impetus of Space Age

1. Reorganisation of IAG after World War II

IUGG / IAG General Assemblies

1948 Oslo1951 Brussels1954 Rome1957 Toronto1960 HelsinkiStructure in Sections (before Commissions):
I TriangulationII LevellingIII Geod. AstronomyIV GravimetryV GeoidPrincipal research fields:
Triangulation:
Adjustment of large networks under consideration of the geoid; National
calibration lines, Geodimeter; radar geodesy (Shoran).

Levelling: Reductions due to gravity and refraction; Surface movements.

Geod. Astro: Azimuth-, latitude-, longitude determ.; zenith camera; clock correction.

Gravimetry: World gravity network; Improvement of the Potsdam absolute value (gravimeters, pendulums), calibration lines.

Geoid:

Gravity data, deflections of the vertical, zenith angles, mass reduction.

W. Lambert, US

C. Baeschlin, CH J.

J. de Graaf Hunter, UK

G. Cassinis, IT

Hermann Drewes

2. Beginning of the Satellite Age (1963 – 1971)

(Sputnik 1 on 04.10.1957, Explorer 1 on 01.02.1958, Echo-1 on 12.08.1960)

IUGG / IAG General Assemblies 1963 Berkley 1967 Zurich-Lucerne

New Structure of Sections (1946 ... $1963 \rightarrow 1963$...):

G. Bomford, UK

A. Marussi, IT

J.J. Levallois, FR GS 1960-1975

3. Integration of Space Methods (1971 – 1983)

Y. Boulanger, SU

T. Kukkamäki, FI

H. Moritz, AT

M. Louis, FR GS 1975-1991

4. Geodynamics & Global Change (1983–2003)

IUGG / IAG General Assemblies 1983 Hamburg 1987 Vancouver 1991 Vienna 1995 Boulder 1999 Birmingham Structure of Sections (1971 ... 1983 \rightarrow 1983 ...):

III Gravimetry

Control Surveys

II Space **Techniques**

Positioning

and navigation)

Advanced Space Techniques (besides geodesy (not only classical also geodynamics = optical, Doppler, but modern)

Determination of the Gravity Field

(terr. gravimetry, satellite gravity field methods)

Theory and Methodology

IV Theory and

Evaluation

(no evaluation of data, only methodology)

Geodynamics

Interpretation

Physical

V

(kinematic and dynamic modelling)

P. Angus-Leppan, AU Hermann Drewes

I. Mueller, US

W. Torge, DE

K.-P. Schwarz.[®]CA

IAG Services

IERS:	International Earth Rotation and Reference Systems Service				
(ILS in 1899, BIH in 1912, IPMS in 1962, IERS in 1987)					
IGS:	International GNSS Service (1994)				
IVS:	International VLBI Service (1999)				
ILRS:	International Laser Ranging Service (1998)				
IDS:	International DORIS Service (2003)				
IGFS:	International Gravity Field Service (2004)				
BGI:	Bureau Gravimetrique International (1951)				
IGeS:	International Geoid Service (1992)				
ICET:	International Centre for Earth Tides (1956)				
ICGEM:	International Centre for Global Earth Models (2003)				
IDEMS:	International Digital Elevation Models Service (1999)				
PSMSL:	Permanent Service for Mean Sea Level (1933)				
IAS:	International Altimetry Service (2008)				
BIPM:	Bureau International des Poids et Mesures (Time 1875)				
IBS:	IAG Bibliographic Service (1889)				

Gravimetry Geometry

5. Global Geodetic Observing System

G. Beutler, CH Hermann Drewes

M. Sideris, CA

C. Tscherning, DK

1995-2007

From "Mitteleuropäische Gradmessung" to IAG (3)

- Increasing "internationalisation", initially govt-focused, then science-focused, now <u>balance</u> of geoscience/geospatial
- Progressive R&D, then operationalisation of new geodetic technology, with biggest boost since start of the Space Age
- GPS/GNSS increasingly <u>vital</u> for Modern Geodesy
- Progressive increase in accuracy, leading to <u>4-D monitoring</u>
- Focus on Global Change studies, requiring measurement of time-series & long-term stability of reference frames
- Introduction of "services", leading to integrated "observing system"
- Increasing reliance on global geodetic infrastructure & international cooperation

IAG Structure since 2003

International Union of Geodesy and Geophysics (IUGG)

International Association of Geodesy (IAG)

Inter-Commission Committee on Theory (ICCT)

The Global Geodetic Observing System

Space Geodetic Techniques

CHAMP

XC

GRACE-1/2

a large toolkit.

. . .

GOCE

SLR sats

DORIS sats

JASON-2

EM-X

CHAMP

Cryosat-2

IceSat-2

... and associated ground infrastructure

GNSS

Positioning

GALILEO

COMPASS

IceSat-1

Significant ground-based infrastructure for geometrical services...

What is GGOS?

The goal of GGOS can be summarised: improve the accuracy, resolution, reliability & timeliness of geodetic products by an order of magnitude in the coming decade -- 1mm accuracy reference frame (RF) & stability of 0.1mm/yr...

in order to monitor faint "System Earth" effects.

shop" for advanced geodetic products...

http://www.ggos.org

IAG's Global Geodetic Observing System

GGOS 2020 Plan

- Published by Springer in Summer 2009
- Editors: H.P. Plag & M.
 Pearlman; many co-authors
- ISBN: 978-3-642-02686-7
- 332 pages, 129.95 €!
- Reference book for all GGOSrelated activities and planning
- Excellent resource on Modern Geodesy; its techniques & capabilities

Global Geodetic Observing System

Meeting the Requirements of a Global Society on a Changing Planet in 2020

Geodesy Trends

- **Increasing global cooperation...** *vital to addressing* GGOS goals.
- Scientific geodesy guided by GGOS2020 user requirements.
- Order-of-magnitude improvement in accuracy... e.g. reference frame stability.
- Improvements in performance... spatial/temporal resolution, timeliness, etc.
- Continued reliance on GNSS... the ultimate geodetic/postioning tool.
- Convergence of global geodesy goals/trends with regional & national goals... especially wrt datums, GNSS infrastructure, "unified geodesy agendas", etc.
- Geodesy as an "earth observing science"... focus on "change detection" (4-D), "geodetic imaging", etc.

GGOS: Monitoring Geometric & Gravimetric Signatures

Extending the Reference Frame to Multiple Applications

Illuminating the Earth with GNSS

Global Geodetic Observing System (GGOS)

GGOS Mission: to provide the observations needed to monitor, map and understand changes in the Earth's shape, rotation and mass distribution.

ITRF: Implications for Geodetic Science & Geodetic Practice

- Today's geodetic technologies, infrastructure, services & methodologies are so powerful that motion of every point on the Earth's surface is measurable.
- GNSS *both* defines ITRF & allows easy connection to RF/datum.
- Global Change studies demand monitoring of geodetic time-series against highest accuracy/stability ITRF.
- Time-varying coordinates are the "signal" for the geosciences, however they are "noise" (or nuisance) for the geospatial community and users in general.
- Datums based on ITRF by defining a Ref Epoch <u>and</u> (traceable) links via (mainly) GNSS CORS or temporary groundmarks.
- Reconciling these differences, to ensure that good geodetic principles are adopted (datum & practice) is now the challenge for organisations such as the IAG & FIG.

The International Terrestrial Reference Frame

Current IAG Structure

International Union of Geodesy and Geophysics (IUGG)

International Association of Geodesy (IAG)

Inter-Commission Committee on Theory (ICCT)

Global Geodetic Observing System (GGOS)

What is a Reference Frame in Practice?

- Earth fixed/centred RF: allows determination of station position wrt stable continuously maintained ITRF
- All geocentric datums directly or indirectly aligned with ITRF WGS84 equiv to ITRF2008
- All points, objects, geodetic control marks, GNSS CORS or geodetic observatories on the surface of the Earth move (4-D coords):
 - Crustal motion
 - Local deformation
 - Earth tides & other periodic phenomena
 - Ground subsidence or inflation
- Some station positions and velocities are now determined with mm and mm/yr precision using a variety of space geodesy techniques (goal of GGOS)

Origin, Scale & Orientation

Earth Fixed/Centred Reference Frame Z. Altamimi

Space Geodesy Techniques

GNSS

VLBI

DORIS

International Earth Rotation and Reference Systems Service

Contribution of Geodetic Techniques to the ITRF

Mix of techniques is fundamental to realise a RF that is stable in origin, scale, and with sufficient coverage

Technique Signal Source Obs. Type	VLBI Microwave Quasars Time difference	SLR Optical Satellites Two-way absolute range	GNSS Microwave Satellites One-way, range difference	DORIS
Celestial Frame & UT1	Yes	No	No	No
Polar Motion	Yes	Yes	Yes	Yes
Scale	Yes	Yes	No (but maybe in the future!)	Yes
Geocentre ITRF Origin	No	Yes	Future	Future
Geographic Density	No	No	Yes	Yes
Real-time & ITRF	Yes	Yes	Yes	Yes
Decadal Stability	Yes	Yes	Yes	Yes

International Terrestrial Reference System & IERS

- Realised and maintained by Product Centre of the International Earth Rotation & Reference Systems Service (IERS).
- ITRS realisation is the "International Terrestrial Reference Frame" (ITRFxx). ("xx" is year of computation, not always Ref Epoch.)
- Individual TRF solutions (SINEX) from VLBI, SLR, GNSS and DORIS services.
- Set of station positions and velocities, estimated by combination of VLBI, SLR, GNSS and DORIS individual TRF solutions, at an epoch date.
- Need <u>all</u> space geodetic techniques, and based on co-location sites, i.e. cannot use GNSS alone! GNSS is for densification/connection of/to ITRF.

Adopted by IAG & IUGG in 1991 and 2007 for all Earth Science Applications

Available: ITRF92,..., 2000, 2005 Current: ITRF2008 Under construction: ITRF2013

http://www.iers.org

Current Space Geodesy Networks

Co-location Sites for ITRF

- Site where two or more space geodetic instruments are operating
- Surveyed in 3-D, using terrestrial obs or GNSS
- Differential coordinates (DX, DY, DZ) are available

ITRF Construction

ITRF2008 Network

Global Geodetic Reference Frame ITRF

ITRF2008 STATION POSITIONS AT EPOCH 2005.0 AND VELOCITIES IGS STATIONS

DOMES NB.	SITE NAME	TECH. ID.	x/vx	y/vy	Z/Vz	Sigmas	ŝ
					m/m/y		
100015006	Paris	GNSS OPMT	4202777.371	171367.999	4778660.203	0.001 0.001 0.001	
100015006			0125	0.0178	0.0107	.0001 .0000 .0001	
10002M006	Grasse (OCA)	GNSS GRAS	4581690.901	556114.831	4389360.793	0.001 0.001 0.001	
10002M006			0133	0.0188	0.0120	.0001 .0000 .0001	
10002M006	Grasse (OCA)	GNSS GRAS	4581690.900	556114.837	4389360.793	0.001 0.001 0.001	
10002M006			0133	0.0188	0.0120	.0001 .0000 .0001	
10002M006	Grasse (OCA)	GNSS GRAS	4581690.900	556114.836	4389360.797	0.001 0.001 0.001	
10002M006			0133	0.0188	0.0120	.0001 .0000 .0001	
10003M004	Toulouse	GNSS TOUL	4627846.029	119629.333	4372999.818	0.001 0.001 0.001	
10003M004			0114	0.0193	0.0121	.0001 .0000 .0001	
10003M009	Toulouse	GNSS TLSE	4627851.831	119640.017	4372993.553	0.001 0.001 0.001	
10003M009			0114	0.0193	0.0121	.0001 .0000 .0001	
10003M009	Toulouse	GNSS TLSE	4627851.828	119640.020	4372993.552	0.001 0.001 0.001	
10003M009			0114	0.0193	0.0121	.0001 .0000 .0001	
10004M004	Brest	GNSS BRST	4231162.578	-332746.680	4745130.926	0.001 0.001 0.001	
10004M004			0115	0.0172	0.0115	.0001 .0000 .0001	
10004M004	Brest	GNSS BRST	4231162.578	-332746.675	4745130.916	0.001 0.001 0.001	
10004M004			0115	0.0172	0.0115	.0001 .0000 .0001	
10004M004	Brest	GNSS BRST	4231162.576	-332746.678	4745130.921	0.001 0.001 0.001	
10004M004			0115	0.0172	0.0115	.0001 .0000 .0001	
10020M001	Chize	GNSS CHIZ	4427603.244	-31506.045	4575621.805	0.001 0.001 0.001	
10020M001			0112	0.0188	0.0118	.0001 .0001 .0001	
10023M001	La Rochelle	GNSS LROC	4424632.565	-94175.229	4577544 083	0 001 0 001 0 001	7
10023M001			0116	0.0184	$X_{i1} = X_{i0}$	$+(t_1 - t_0)$.	
10073M008	Mar				11 10	$\sqrt{1}$ $0/yrs$	x
10073M008	ITRF2	008 R	ef Enoc	h $t_a = 1$	T 7 T 7		
10073M008	Mar			-	$ Y_{t1} = Y_{t0} +$	$+(t_1 - t_0)_{\text{urg}}.V_{\text{urg}}$	
10073M008	2005 0	(com)			<i>l</i> 1 <i>l</i> 0	(1 0) y s y	
10073M008	Mar ZUUJ.U) (Saine		JJ04)	7 7	(4 + 1) IZ	-
10073M008		CNGG NADC	4630533 763	422046 200	$\boldsymbol{Z}_{t1} = \boldsymbol{Z}_{t0}$	$+ (l_1 - l_0)_{yrs} . V_2$	z
http://itr	f ian fr 🖡	GNSS MARS	4030332./03	433940.308	0 0110	0001 0001 0001	
			0124	0.0188	0.0119	.0001 .0001 .0001	•

Challenge is that many ITRF stns move with non-linear motions between ITRF recomputations... To monitor ITRF (& all RFs & datums based on it), need continuous measure of stn velocity by GNSS so as to transform 3-D coords back/forth in time.

International Association of Geodesy

... advancing geodesy ...

tuent Association of the

Another challenge is long-term operation of ITRF stns (in Asia-Pacific GNSS CORS are affordable) and free exchange of raw data so that weekly/monthly individual solutions can be computed... That is the responsibility of NMO, research institutes & universities.

International Association of Geodesy

... advancing geodesy ...

The International GNSS Service

International GNSS Service (IGS)

- The IGS is a voluntary federation more than 200 worldwide agencies in more than 90 countries – that pool resources and permanent GNSS station data to generate precise IGS products.
- Geospatial applications & earth science missions rely upon *IGS products* (orbits, clocks, coordinate time series, etc).
- IGS products are critical to ITRF definition, maintenance & its accessibility.
- IGS products are *combinations* of independent results from several ACs.
- Reliability through *redundancy*.
- Improvements in signals, receivers and computations have led to progressive improvements in product quality.
- *New IGS products* are being developed.
- All IGS data and products are available free of charge.

Over 400 permanent tracking stations comprise the IGS network. Currently the IGS supports two GNSS: GPS and the Russian GLONASS. IGS plans to include Galileo, BeiDou and QZSS.

IGS Reference Frame	Troposphere WG
Timing and Precise Clocks	Sea Level - TIGA Proje
Ionosphere WG	Real-Time WG
Antenna Calibration WG	Data Centres WG
Bias and Calibration WG	Multi-GNSS WG

IGS GPS Tracking Network

GMD 2013 Apr 20 16:45:29

http://igs.org

GPS+GLONASS Tracking Network

IGS

GMD 2013 Apr 20 16:47:49

http://igs.org

IGS Real-time Network

GMD 2013 Mar 5 15:25:24

http://rts.igs.org

150+ stations

Current IGS Products

- Precise GNSS orbits (post-processed & predicted):
 - GPS (2-5 cm, 3Dwrms), predictions (<5-10 cm)
 - GLONASS (~5-10 cm, 3Dwrms)
- GNSS clock corrections (satellite & rec: sub-ns)
- Earth rotation parameters (polar motion, PM rate, LOD)
- Ground positioning (sub-cm) of core IGS CORSs, for definition, maintenance & access to ITRF
- Ionospheric delay mapping (VTEC)
- Tropospheric parameters (integrated water vapour)
- Tracking data from IGS CORSs (RINEX files, or real-time RTCM data streams)

(GPS Broadcast Values Included for Comparison)

199

GPS SATELLITE EPHEMERIDES/ SATELLITE & STATION CLOCKS		ACCURACY	LATENCY	UPDATES	SAMPLE Interval
Broadcast	Orbits Sat. clocks	~100 cm ~5 ns	real time		daily
Ultra-Rapid (predicted half)	Orbits Sat. clocks	~5 cm ~3 ns	real time	4x daily	<u>15 min</u> 15 min
Ultra-Rapid (observed half)	Orbits Sat. clocks	<3 cm ~0.15 ns	3 hours	4x daily	<u>15 min</u> 15 min
Rapid	Orbits Sat. & Stn. clocks	<2.5 cm 75 ps	17 hours	daily	<u>15 min</u> 5 min
Final	Orbits Sat. & Stn. clocks	<2.5 cm <75 ps	~12 days	weekly	15 min 5 min
Real Time Combination	Orbits Sat. clocks	~10 cm <0.3 ns	25 sec	10 sec	10 sec
Real Time AC Streams	Orbits Sat. clocks	~10 cm ~0.3-2 ns	8-20 sec	5-10 sec	5-10 sec

Note 1: IGS accuracy limits, except for predicted orbits, based on comparisons with independent laser ranging results. The precision is better. Note 2: The accuracy of all clocks is expressed relative to the IGS timescale, which is linearly aligned to GPS time in one-day segments. Note 3: The methods used by some RT Analysis Centres result in high clock biases for individual satellites. Clock standard deviation, which is the more important metric for Precise Point Positioning, is typically of the order of 0.1 ns.

GLONASS SATELLITE	EPHEMERIDES				
Final		5 cm	12-18 days	weekly	15 min
GEOCENTRIC COOR TRACKING STATION	DINATES OF IGS S (>130 SITES)				
Final Positions	Horizontal Vertical	3 mm 6 mm	12 days	weekly	weekly
Final Velocities	Horizontal Vertical	2 mm/yr 3 mm/yr	12 days	weekly	weekly
EARTH ROTATION P	ARAMETERS	·			
Ultra-Rapid (predicted half)	Polar Motion Polar Motion Rate Length-of-day	0.2 mas 0.3 mas/day 0.05 ms	real time	4x daily	4x daily
Ultra-Rapid (observed half)	Polar Motion Polar Motion Rate Length-of-day	0.05 mas 0.25 mas/day 0.01 ms	3 hours	twice daily	twice daily (00 & 12 UTC)
Rapid	Polar Motion Polar Motion Rate Length-of-day	<0.04 mas <0.2 mas/day 0.01 ms	17 hours	daily	daily (12 UTC)
Final	Polar Motion Polar Motion Rate Length-of-day	0.03 mas <0.15 mas/day 0.01 ms	~13 days	weekly	daily (12 UTC)
Note: The IGS uses VLB	I results from IERS Bulletin A to	calibrate for long-term LOD b	iases.		
ATMOSPHERIC PARAM	METERS				
Final tropospheric zenith path delay		4 mm	<4 weeks	daily	5 min
Ionospheric TEC grid		2-8 TECU	~11 days	weekly	2 hours; 5 deg (lon) x 2.5 deg (lat)

http://igs.org/components/prods.html

•

Occasional "reprocessing"

IGS Ultra Rapid Product

Motivation for M-GNSS

- IGS *is* the International GNSS Service
 - Well established infrastructure, data and service for GPS (+ GLONASS)
 - IGS Strategic Plan foresees extension to all new GNSSs
 - IGS Strategic Plan includes (multi-GNSS) Real-Time Service (RTS)
- Ongoing deployment of new GNSSs with new signals and satellites
 - BeiDou, Galileo, QZSS, SBAS
- Continued evolution of products supporting multi-constellation, multi-frequency GNSS

• Multi-GNSS Experiment (MGEX)

- Steered by Multi-GNSS Working Group (MGWG)
- Build-up of new multi-GNSS tracking network during 2012 (ongoing)
- First MGEX results in 2013
- Launch of the IGS-RTS 1 April 2013

The challenge is extension & upgrade of GNSS CORS network, and open provision of raw data to IGS (& others)...

The more complex the crustal dynamics, the more GNSS CORS that are needed so as to implement ITRF with appropriate fidelity.

That is the responsibility of NMO, research institutes & universities, coordinated by the IGS.

... advancing geodes

International

ssociation of

IGS Real-time Network

GM) 2013 Mar 5 15:25:24

http://rts.igs.org

150+ stations

IAG / FIG / UNGGIM / UNICG / PhilGEGS

Reference Frame in Practice

Manila, Philippines 21-22 June 2013

Thank You

