IAG / FIG / UNGGIM / UNICG / PhilGEGS

Reference Frame in Practice

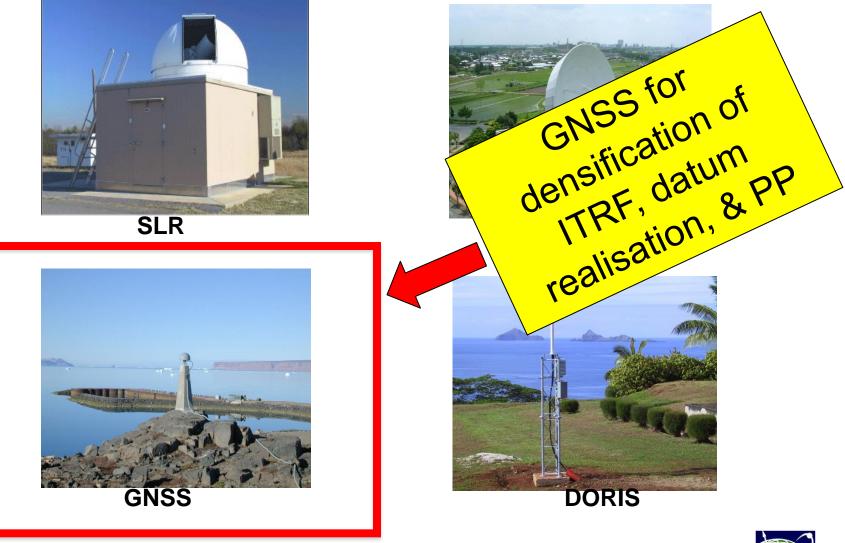
Manila, Philippines 21-22 June 2013

Reference Frame Infrastructure

Chris Rizos UNSW, Australia President IAG

From Classical to Modern Geodesy

- ▹ From 3-D points and surfaces, to <u>4-D</u> mapping.
- Increasing <u>time</u> resolution of geodetic measurements & products, from 0.1s positions, to daily ERP, to monthly gravity field models.
- Increasing <u>spatial</u> resolution of geodetic products, from 1m for SAR, to 100km for gravity field features.
- > Increasing <u>accuracy</u>, on both short-term and long-term time scales.
- > Increasing reliance on global infrastructure and global services.
- The importance of international reference frames (& modern national datums) with ever greater "fidelity" is reaffirmed....


National Datums & Reference Frames

- Modern national datums typically are realisations of ITRF (at Ref Epoch).
- Use GNSS to "connect" to the ITRF (e.g. via nearest IGS stations) or regional RF such as APREF (via CORS), etc.
- WGS84 RF is very "close" (cms) to ITRF... both have 2005.0 Ref Epoch & estimated stn velocities, *i.e. fixed points really have 4-D coords.*
- Different ITRFs only mm-to-cm differences in 3-D coords... much larger crustal motion effect on coords at differing REs (e.g. 2005->2013).
- National datums may be "frozen" at past epoch (e.g. Australia's GDA94 assumes no vels), or are "dynamic" (4-D coords), or regular "update"?
- GNSS ideal for defining, realising & monitoring national datums... both "internally" (e.g. deformation) and "externally" (e.g. wrt ITRF or APREF).
- "Height datum" must be handled separately as involves gravity field effects... although ellipsoidal heights may be better option for many apps.
- VLBI & SLR are necessary for long-term stability of ITRF... but national (and local) datums are principally reliant on GNSS, typically via CORS.

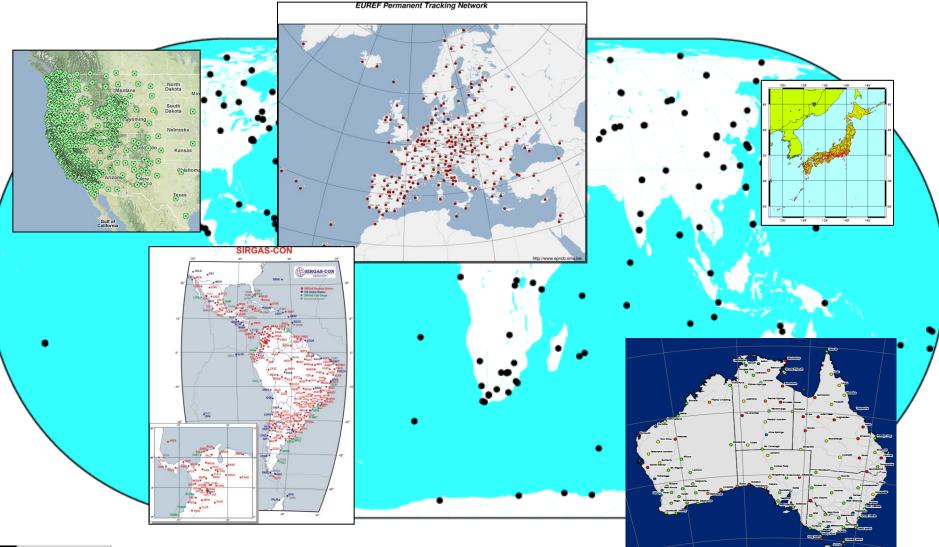
Space Geodesy Techniques

Outline ...

- GNSS as Core Geodetic Infrastructure
- GNSS and the Maintenance of the ITRF
- Using GNSS to Connect to ITRF via CORS
 Infrastructure

GNSS as Core Geodetic Infrastructure

International Association of Geodesy A Constituent Association of the IUGG


... advancing geodesy ...

Precise Positioning GNSS Applications

- Current GNSS principles. Coursential GNS Define/monitor datur geodesus scanning/imaging sensors

Global/Regional/National CORS Networks

GM7 2013 Apr 13 16:46:40

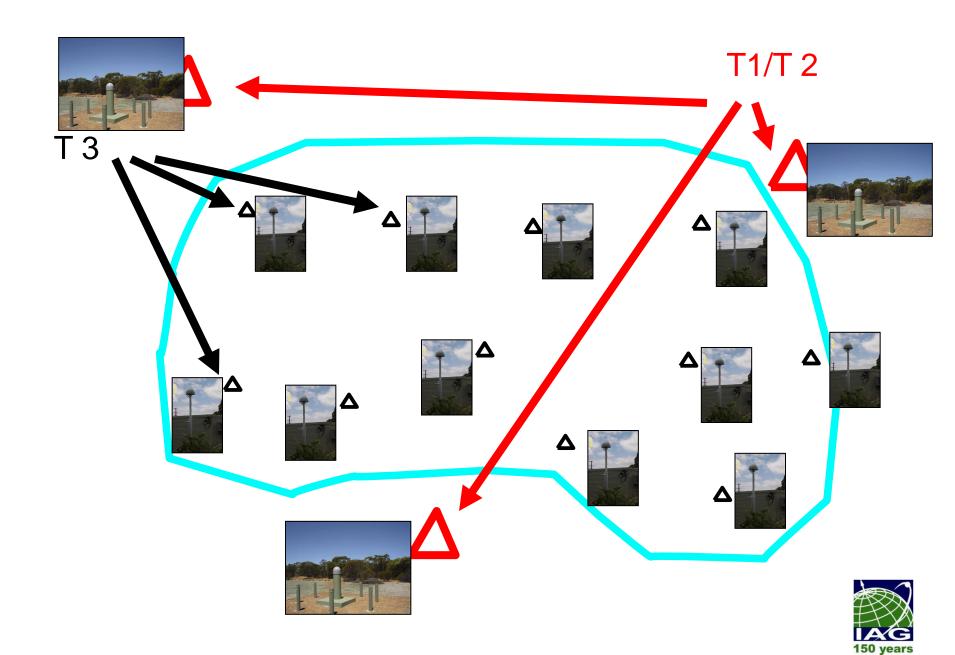
Multi-Tier Positioning Infrastructure

GNSS CORS (& other) geodetic infrastructure could be considered *heirarchical*:

- (1) *Tier 1:* IGS-class stations... equipped with MGNSS receivers, with best monumentation, co-located with other geodetic instrumentation, to maintain ITRF & support science.
- (2) *Tier 2:* primary national geodetic CORS network... MGNSS receivers, stable monumentation, providing foundation for regional RFs, national datums &positioning infrastructure, which can also support geoscience.
- (3) *Tier 3:* state (or secondary) and private CORS networks... COTS GNSS Rxs, supporting real-time or post-survey users, as well as other GNSS apps, characterised by "nongeodetic" monumentation.

Geodetic CORS Monumentation... Tier 1&2

GNSS Non-Geodetic CORS Monumentation... Tier 3



Coping with Multi-GNSS Complexity: Some Technical Issues to Consider

- Ratio of Tier 1 to Tier 2 to Tier 3 CORS, and their geographic distribution across a country, or region, or city?... need a "spatial deployment strategy"
 ...5-10% T1/T2 to T3?
- Timeline for the deployment of MGNSS CORS over the coming decade? Upgrade cycle?...
 need a "temporal deployment strategy".
 ...T1/T2 infrequent (datum), T3 more regular (customer services)

000		IGS Site Guidelines											
	o igscb.jpl.nasa.	gov/network/	guidelin	nes/gu	idelines.html						Ċ	Reader	
60 M	c_rizos on Twitter	Time Scale	Apple	NRL	UNSW-CVEN T	Catalogues ▼	Google Maps	UNSW 🔻	Geodesy 🔻	Wikipedia	Navigatio	on ▼	>>

IGS I	and the second se	I GNSS Servi nerly the Internatio			
	Products	Network	Projects	Calendar	Organization
About	Mail	FAQ	Publications	FTP	Site map

IGS Site Guidelines

Infrastructure Committee Central Bureau April 2013

PDF available 🔁

Introduction	Guidelines Hour	urly Stations Met. Data	High-Rate Stations	TIGA sites	Timing stations	OPS
--------------	-----------------	-------------------------	--------------------	------------	-----------------	-----

1. Introduction

The IGS network is a collection of heterogeneous stations operated by many different organizations pooling their resources under the IGS umbrella for the common good. Stringent rules are inconsistent with the voluntary nature of the IGS. However, participating stations must agree to adhere to the standards and conventions contained herein, which ensure the consistent high quality of the IGS network and products. Of particular importance to the IGS is the stable, long-term operation of the network. Therefore, changes to any station's configuration or immediate surroundings should be carefully planned to minimize discontinuities in the station's position time-series.

Special consideration should be given to designated reference frame stations that contribute to the realization of the International Terrestrial Reference Frame (ITRF)(see the IGS08.snx file for a listing of stations that contribute to the IGS reference frame). Any changes to these stations should be planned well in advance following the procedures in section 2.3 of these Guidelines.

IGS Site Guidelines

- Differentiate between "strict" and "recommended" guidelines.
- Distinguish between different types of IGS network stations, e.g. high-rate, timing, TIGA, RT, GLONASS/MGNSS, etc.
- For Reference Frame sites, special considerations regarding instrument changes.
- Guidelines on documentation, monumentation, antenna siting, data transfer & station operations, and more.
- IGS Site Guidelines can also be used for T2 sites.
- Download IGS Site Guidelines from: http://igs.org/network/guidelines/IGS_Site_Guidelines.pdf http://igscb.jpl.nasa.gov/network/guidelines/guidelines.html

Coping with Multi-GNSS Complexity: Some Technical Issues to Consider

- The minimum specifications of Tier 1, 2 and 3 CORS Rxs is a "moving target" as tracking capability will necessarily change with time; from current GPS+Glonass, to GPS(modernised)+Glonass, GPS(m)+Glonass(m)+BeiDou, G+G+Beidou+Galileo+?
- What are the international standards? RINEX, RTCM, etc.

GNSS	Freq. Band		Observation Codes								
System	/Frequency	Channel or Code	Pseudo Range	Carrier Phase	Doppler	Signal Strength					
GPS		C/A	C1C	L1C	D1C	S1C					
		L1C (D)	C1S	L1S	D1S	S1S					
		L1C (P)	C1L	L1L	D1L	S1L					
		L1C (D+P)	C1X	L1X	D1X	S1X					
	L1/1575.42	Р	C1P	L1P	D1P	S1P					
	L1/13/3.42	Z-tracking and similar (AS on)	C1W	L1W	D1W	S1W					
		Y	C1Y	L1Y	D1Y	S1Y					
		М	C1M	L1M	D1M	S1M					
		codeless		L1N	D1N	S1N					
		C/A	C2C	L2C	D2C	S2C					
		L1(C/A)+(P2-P1) (semi-codeless)	C2D	L2D	D2D	S2D					
		L2C (M)	C2S	L2S	D2S	S 2 S					
		L2C (L)	C2L	L2L	D2L	S2L					
	L2/1227.60	L2C (M+L)	C2X	L2X	D2X	S2X					
	L2/1227.00	Р	C2P	L2P	D2P	S2P					
		Z-tracking and similar (AS on)	C2W	L2W	D2W	S2W					
		Y	C2Y	L2Y	D2Y	S2Y					
		М	C2M	L2M	D2M	S2M					
		codeless		L2N	D2N	S2N					
		Ι	C5I	L5I	D5I	S5I					
	L5/1176.45	Q	C5Q	L5Q	D5Q	S5Q					
		I+Q	C5X	L5X	D5X	S5X					

GNSS	Free Band	Channel or	Observation Codes						
System	Freq. Band /Frequency	Code	Pseudo Range	Carrier Phase	Doppler	Signal Strength			
GLONASS	G1/	C/A	C1C	L1C	D1C	S1C			
	1602+k*9/16 k= -7+12	Р	C1P	L1P	D1P	S1P			
	G2/	C/A (GLONASS M)	C2C	L2C	D2C	S2C			
	1246+k*716	Р	C2P	L2P	D2P	S2P			
		Ι	C3I	L3I	D3I	S3I			
	G3 / 1202.025	Q	C3Q	L3Q	D3Q	S3Q			
		I+Q	C3X	L3X	D3X	S3X			

CNSS	Fuer Dand		Observation Codes							
GNSS System	Freq. Band /Frequency	Channel or Code	Pseudo Range	Carrier Phase	Doppler	Signal Strength				
Calilaa		A DDC	U		D14	0				
Galileo		A PRS	C1A	L1A	D1A	S1A				
		B I/NAV OS/CS/SoL	C1B	L1B	D1B	S1B				
	E1 / 1575.42	C no data	C1C	L1C	D1C	S1C				
		B+C	C1X	L1X	D1X	S1X				
		A+B+C	C1Z	L1Z	D1Z	S1Z				
		I F/NAV OS	C5I	L5I	D5I	S5I				
	E5a / 1176.45	Q no data	C5Q	L5Q	D5Q	S5Q				
		I+Q	C5X	L5X	D5X	S5X				
		I I/NAV OS/CS/SoL	C7I	L7I	D7I	S7I				
	E5b / 1207.140	Q no data	C7Q	L7Q	D7Q	S7Q				
		I+Q	C7X	L7X	D7X	S7X				
	E5(E5a+E5b) /	Ι	C8I	L8I	D8I	S8I				
	1191.795	Q	C8Q	L8Q	D8Q	S8Q				
	1191.795	I+Q	C8X	L8X	D8X	S8X				
		A PRS	C6A	L6A	D6A	S6A				
		B C/NAV CS	C6B	L6B	D6B	S6B				
	E6 / 1278.75	C no data	C6C	L6C	D6C	S6C				
		B+C	C6X	L6X	D6X	S6X				
		A+B+C	C6Z	L6Z	D6Z	S6Z				

CNEE	Enca Dand /	Channel an		Observation Codes						
GNSS System	Freq. Band / Frequency	Channel or Code	Pseudo Range	Carrie r Phase	Doppler	Signal Strength				
QZSS		C/A	C1C	L1C	D1C	S1C				
		L1C (D)	C1S	L1S	D1S	S1S				
	L1 / 1575.42	L1C (P)	C1L	L1L	D1L	S1L				
		L1C (D+P)	C1X	L1X	D1X	S1X				
		L1-SAIF	C1Z	L1Z	D1Z	S1Z				
		L2C (M)	C2S	L2S	D2S	S2S				
	L2 / 1227.60	L2C (L)	C2L	L2L	D2L	S2L				
		L2C (M+L)	C2X	L2X	D2X	S2X				
		Ι	C5I	L5I	D5I	S5I				
	L5 / 1176.45	Q	C5Q	L5Q	D5Q	S5Q				
		I+Q	C5X	L5X	D5X	S5X				
		S	C6S	L6S	D6S	S6S				
	LEX(6) / 1278.75	L	C6L	L6L	D6L	S6L				
		S+L	C6X	L6X	D6X	S6X				

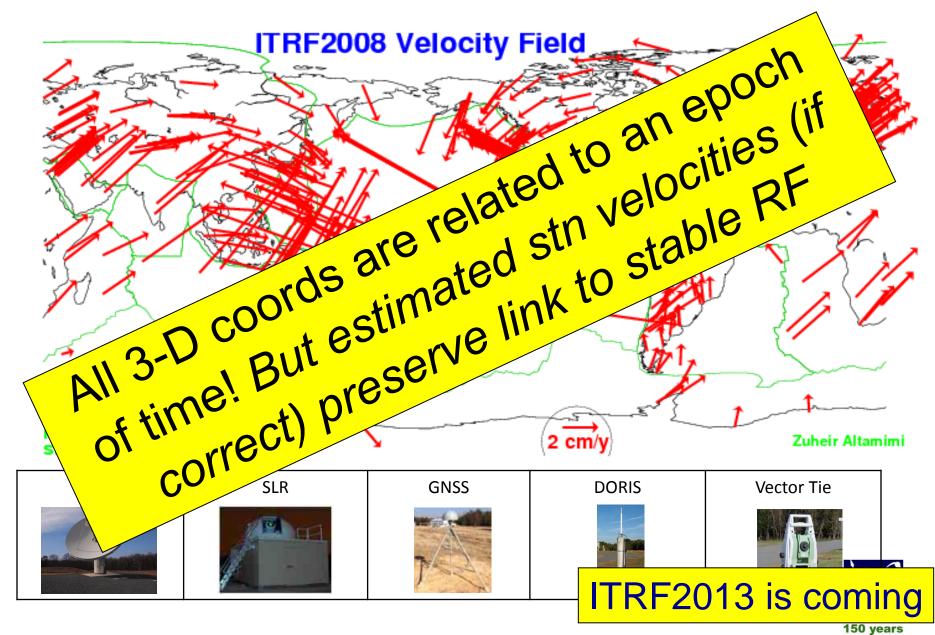
GNSS			Observation Codes					
System	Freq. Band / Frequency	Channel or Code	Pseudo Range	Carrier Phase	Doppler	Signal Strength		
BDS		Ι	C1I	L1I	D1I	S1I		
	B1 / 1561.098	Q	C1Q	L1Q	D1Q	S1Q		
		I+Q	C1X	L1X	D1X	S1X		
		Ι	C7I	L7I	D7I	S7I		
	B2 / 1207.14	Q	C7Q	L7Q	D7Q	S7Q		
		I+Q	C7X	L7X	D7X	S7X		
		Ι	C6I	L6I	D6I	S6I		
	B3 / 1268.52	Q	C6Q	L6Q	D6Q	S6Q		
		I+Q	C6X	L6X	D6X	S6X		

Signal Tracking by Equipment...agreement?

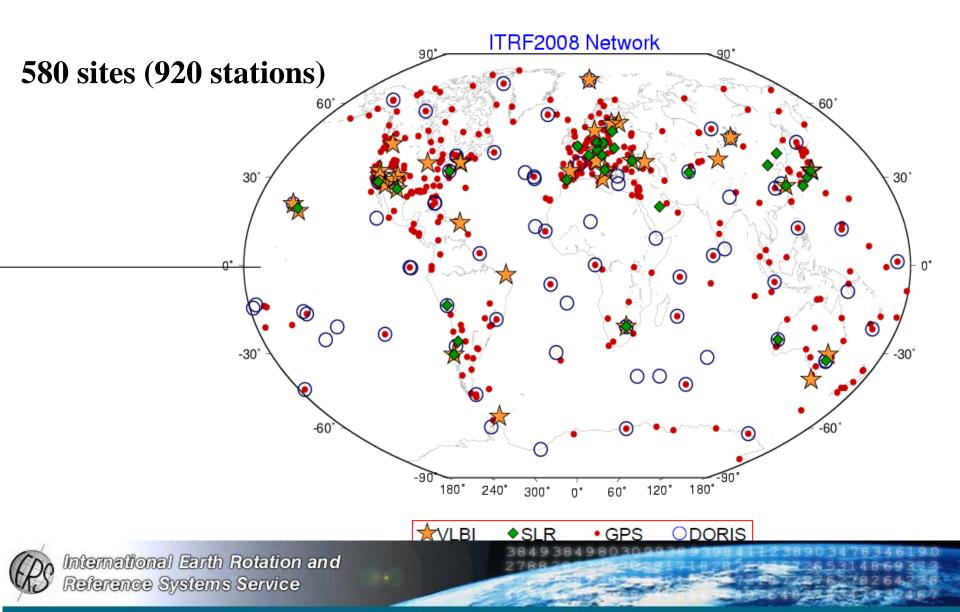
Variety of constellations and signals are tracked, GPS:

JAVAD TRE G2T DELTA	3.4.7	G:L1C	C1C	L1W	C1W	L2X	C2X	L2W	C2W	L5X	C5X	
JAVAD TRE G3TH DELTA	3.4.7	G:L1C	ClC	L1W	ClW	L2X	C2X	L2W	C2W	L5X	C5X	
JAVAD TRE_G3TH DELTA												
JAVAD TRE_G3TH DELTA	3.5.1B2 FEB,14,2013											
LEICA GR10	2.62/6.112	G:L1C	ClC	L2X	C2X	L2W	C2W	L5X	C5X			
LEICA GR10	3.00/6.113	G:L1C	ClC	L2S	C2S	L2W	C2W	L5Q	C5Q			
LEICA GR25	2.62/6.112	G:L1C	ClC	L2X	C2X	L2W	C2W	L5X	C5X			
LEICA GR25	3.0	G:L1C	ClC	L2S	C2SI	L2W (22W 1	L5Q (C5Q			
LEICA GR25	3.00/6.113	G:L1C	ClC	L2S	C2S	L2W	C2W	L5Q	C5Q			
LEICA GRX1200+GNSS								L5X	C5X			
NOV OEM6	OEM060100RN0000	G:L1C	ClC	L2D	C2D	L5Q	C5Q					
SEPT ASTERX3	2.3.4	G:L1C	ClC	ClW	L2L	C2L	L2W	C2W	L5Q	C5Q		
SEPT POLARX4TR	2.3.4	G:L1C	ClC	ClW	L2L	C2L	L2W	C2W	L5Q	C5Q		
SEPT POLARX4TR	2.3.4	G:L1C	ClC	ClW	L2L	C2L	L2W	C2W	L5Q	C5Q		
SEPT POLARXS		G:L1C	ClC	ClW	L2L	C2L	L2W	C2W	L5Q	C5Q		
TRIMBLE NETR9	4.60	G:L1C	ClC	L2X	C2X	L2W	C2W	L5X	C5X			
TRIMBLE NETR9	4.61	G:L1C	ClC	L2X	C2X	L2W	C2W					
TRIMBLE NETR9	4.70	G:L1C	ClC	L2X	C2X	L2W	C2W	L5X	C5X			
TRIMBLE NETR9	4.70	G:L1C	ClC	L2X	C2X	L2W	C2W	L5X	C5X			
TRIMBLE NETR9	4.80	G:L1C	ClC	L2X	C2X	L2W	C2W	L5X	C5X			

GNSS and the Maintenance of ITRF

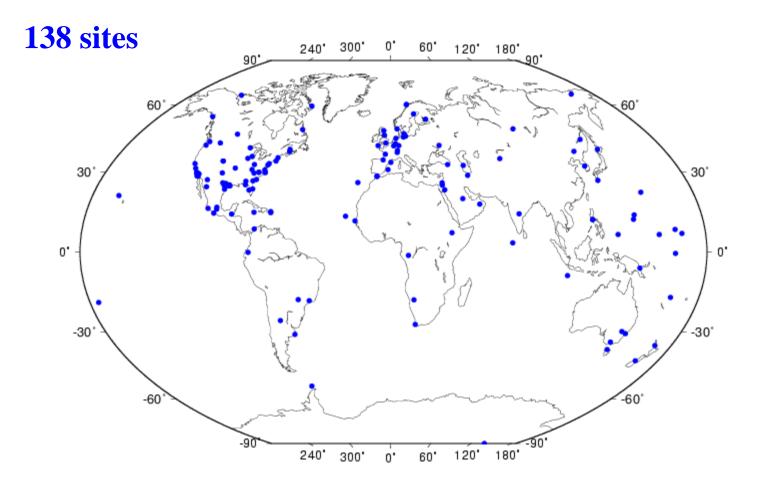


International Association of Geodesy A Constituent Association of the IUGO

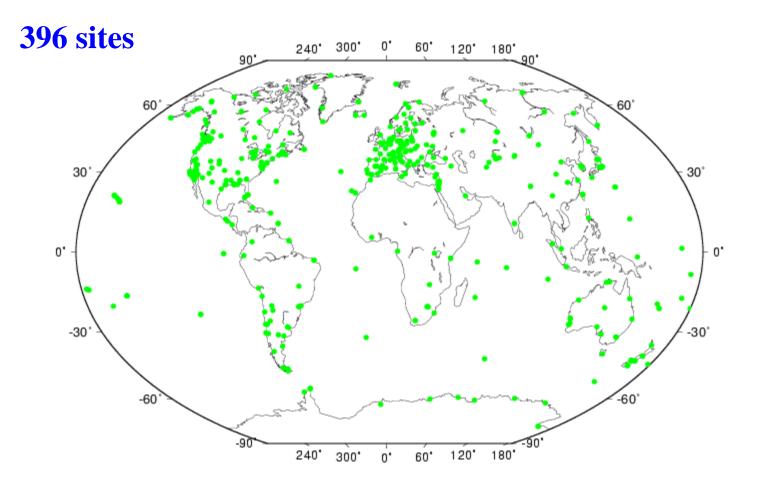


Global Geodetic Reference Frame ITRF

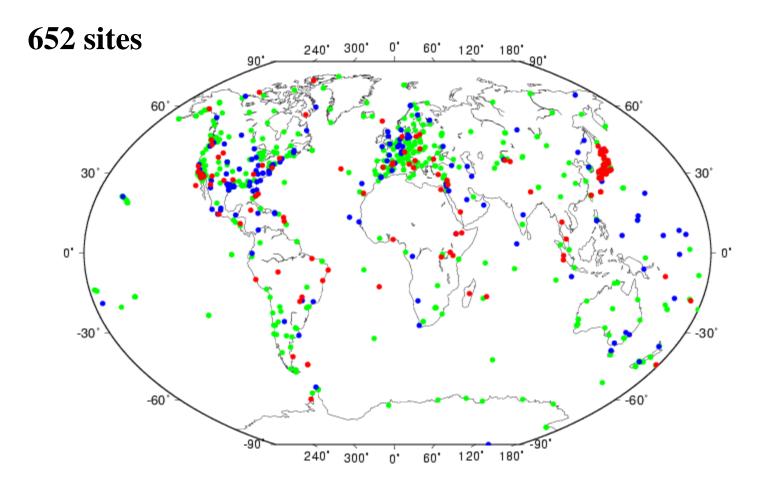
ITRF2008 Network



IGS sites with time series < 5 years

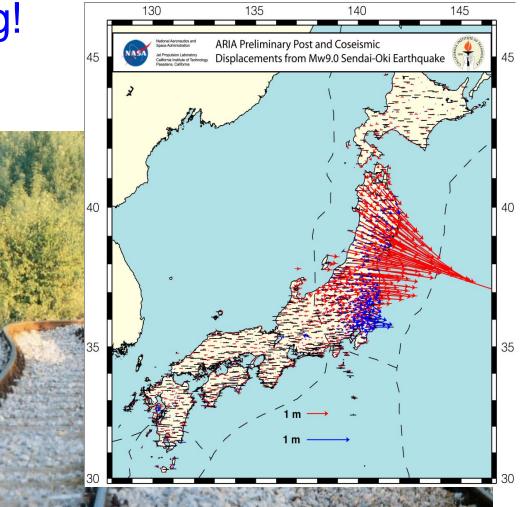


IGS sites with time series between 5-10 years



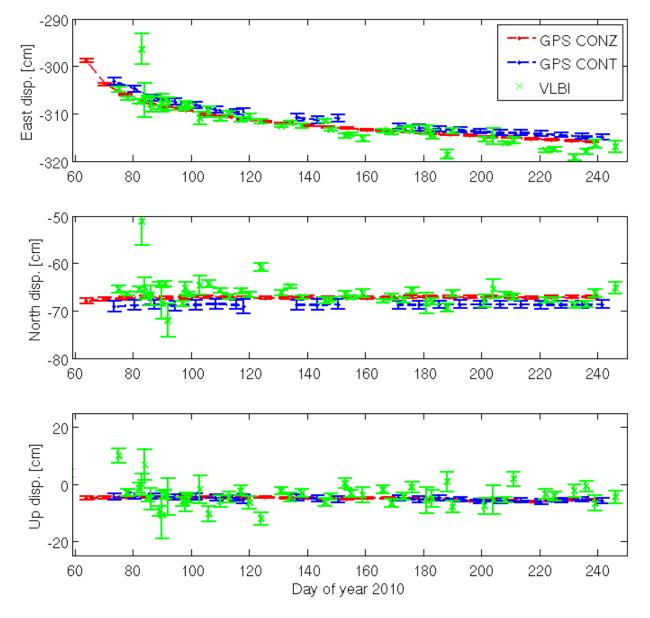
IGS sites with time series between 10-18 years

All IGS sites in ITRF2008



Want long-term stability... but need "breaks" in 4-D stn coords when earthquakes occur... *BIG challenge*

Everything is moving!


- -Earthquakes
- –Tsunamis
- -Sea-level change
- -Plate motions
- Local deformation or subsidence
- Solid Earth tides (caused by Sun and Moon)
- Loading phenomena (ice, ocean, atmosphere)

Continuous observation is essential for understanding

Everything is moving... even after an earthquake

Regional & National Reference Frames

 IAG Commission 1 (Reference Frames) ==> Sub-Commission 1.3 (Regional RFs):

EUREF/Europe:ETRS89NAREF/North America:NAD83SIRGAS/South AmericaAFREF/AfricaAFREF/AfricaAPREF/Asia & PacificSCAR/AntarcticaSCAR/Antarctica

- Regional Reference Frames are (should be) related to ITRF
- Many countries have redefined their geodetic datums to be compatible/related/aligned to ITRF
- Not many user datums account for station velocities in a rigorous manner

Using GNSS to Connect to ITRF via CORS Infrastructure

International Association of Geodesy A Constituent Association of the IUGG

Access & Alignment to the ITRF

The desired real of the obtain stored and the obtain store of the obtain store obtain store obtain store of the obtain of the ob

From ITRF to Regional Reference Frames

Purpose: geo-referencing applications ($\sigma \sim cm$)

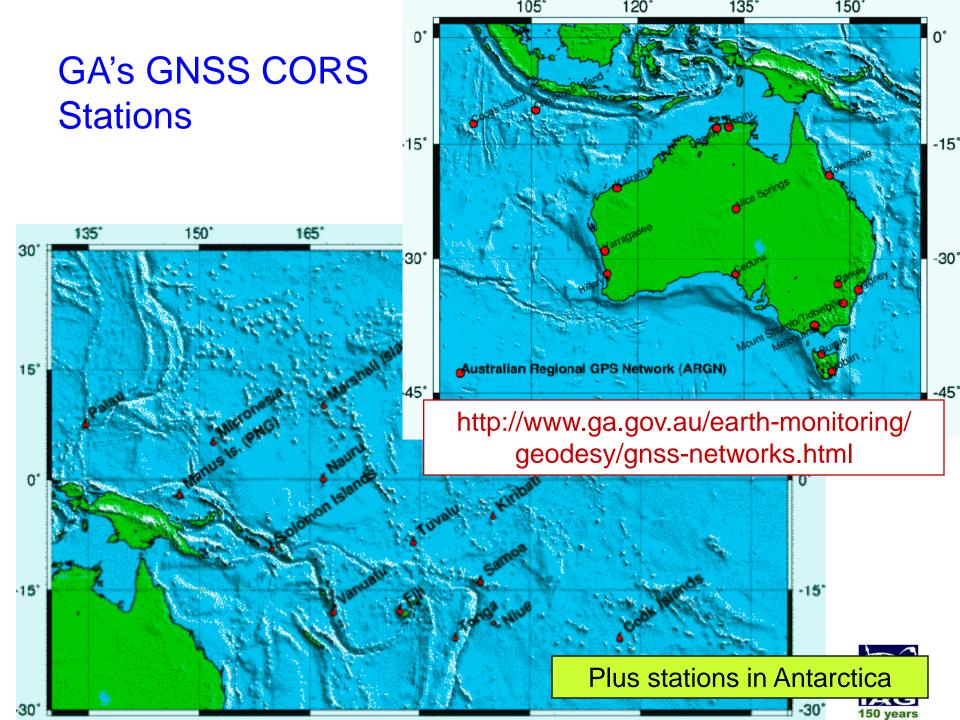
. vorth a give ed RINEX . vorth a give ed RINEX . vorth a based coords in . vorth a based coords in . vorth a based coords in . vorth a based RINEX . vort

Computing ITRF Coordinates Using GNSS

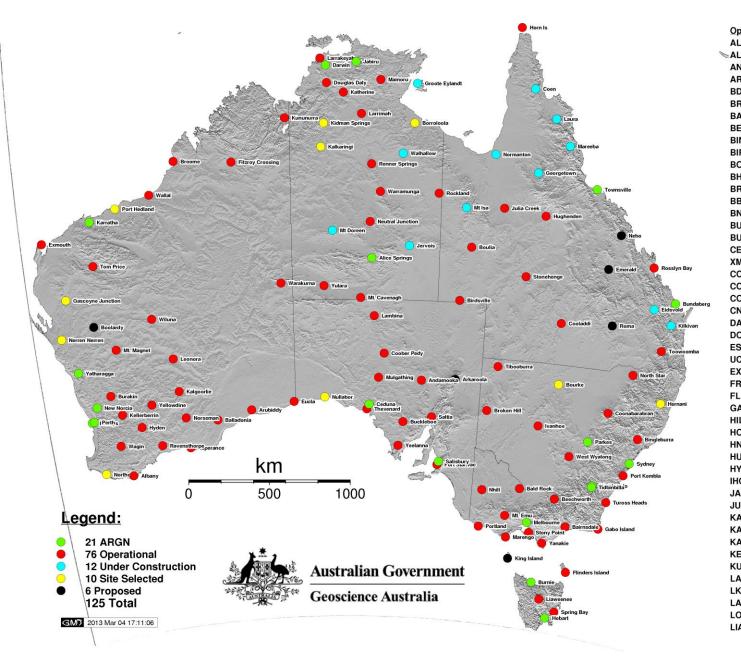
- Short-baseline DGNSS techniques, connect to Tier 1/2/3.
- Scientific software (Bernese, GMAT, Gipsy), long observation sessions, long baselines, connect to Tier 1/2.
- Web-based processing to connect to ITRF (via Tier 1/2 sites).
- Precise Point Positioning (PPP), using IGS orbit/clock products and special software.
- Currently real-time processing *not* used for reference frame densification/connection.
- 3-D coord result at "observation epoch" (could be start of week), so need to transform to standard or datum epoch (e.g. 1994.0, 1997.0, 2002.0, 2005.0, 2010.0, etc).
- ITRF2008 realised by IGS08 frame.
- ITRF2008 equivalent to WGS84 (same Ref Epoch 2005.0)

From ITRF to APREF

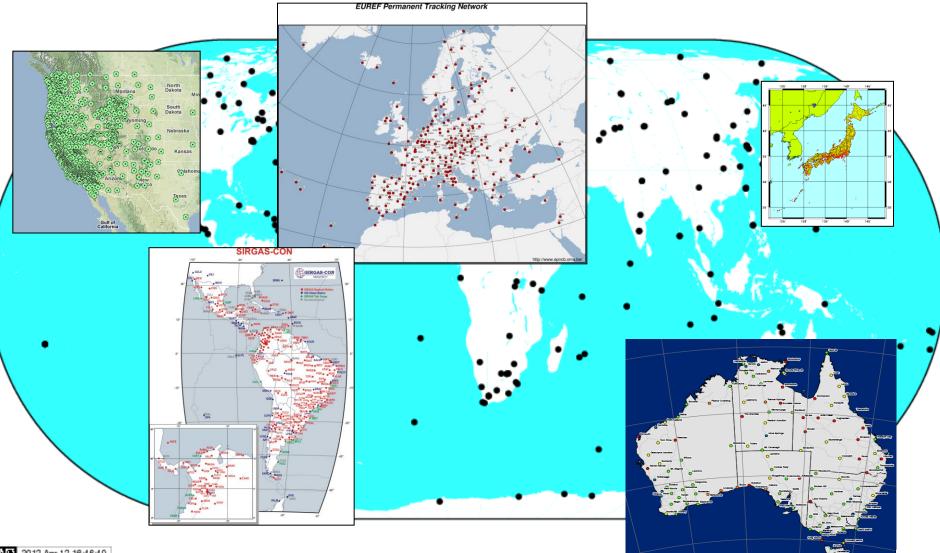
Using GNSS to density ITRF at regional & national level



From ITRF to APREF to GDA



Using GNSS to density ITRF at regional & national level



AuScope CORS Infrastructure

peratio	onal:	LORD	Lord Howe Is
LBY	Albany	MAIN	Mainoru
LIC	Alice Springs	MNGO	Marengo
NDA	Andamooka	MOBS	Melbourne
RUB	Arubiddy	MTCV	Mt. Cavenagh
DLE	Bairnsdale	MTEM	Mt. Emu
RCK	Bald Rock	МТМА	Mt. Magnet
ALL	Balladonia	STR1	Mt. Stromlo
EEC	Beechworth	MULG	Mulgathing
ING	Bingleburra	NEJN	Neutral Junction
IRD	Birdsville	NNOR	New Norcia
OUL	Boulia	NHIL	Nhill
HIL	Broken Hill	NORF	Norfolk Island
RO1	Broome	NORS	Norseman
BOO	Buckleboo	NSTA	North Star
NDY	Bundaberg	PARK	Parkes
URA	Burakin	PERT	Perth
UR2	Burnie	PKEM	Port Kembla
EDU	Ceduna	PTLD	Portland
MIS	Christmas Island	PTSV	Port Stanvac
000	Cocos Island	RAVN	Ravensthorpe
OOB	Coober Pedy	RNSP	Renner Springs
OOL	Cooladdi	RKLD	Rockland
NBN	Coonabarabran	RBAY	Rosslyn Bay
ARW	Darwin	SALB	Salisbury
ODA	Douglas Daly	SA45	Saltia
SPA	Esperance	SBAY	Spring Bay
CLA	Eucla	STON	Stonehenge
хтн	Exmouth	STNY	Stony Point
ROY	Fitzroy Crossing	SYDN	Sydney
LND	Flinders Island	THEV	Thevenard
ABO	Gabo Island	TBOB	Tibooburra
IL1	Hillarys	TID1	Tidbinbilla
OB2	Hobart	TOMP	Tom Price
NIS	Horn Is	TOOW	Toowoomba
UGH	Hughenden	TOW2	Townsville
YDN	Hyden	TURO	Tuross Heads
IOE	Ivanhoe	WAGN	Wagin
AB2	Jabiru	WLAL	Wallal
UCK	Julia Creek	WARA	Warakurna
ALG	Kalgoorlie	WMGA	Warramunga
ARR	Karratha	WWLG	West Wyalong
AT1	Katherine	WILU	Wiluna
ELN	Kellerberrin	YANK	Yanakie
UNU	Kununurra	YAR2	Yatharagga
AMB	Lambina	YEEL	Yeelanna
KYA	Larrakeyah	YELO	Yellowdine
ARR	Larrimah	YULA	Yulara
ONA	Leonora		
IAW	Liaweenee		

Global CORS Networks

GMD 2013 Apr 13 16:46:40

Also national Observation epoch... 1994.0 epoch datum men men men men men and a server and a ser

↑ Topic Home

• Astronomical Information

Geodesy and Global

uing the Results

• Int RINE

How

Underst

GPS Antennas

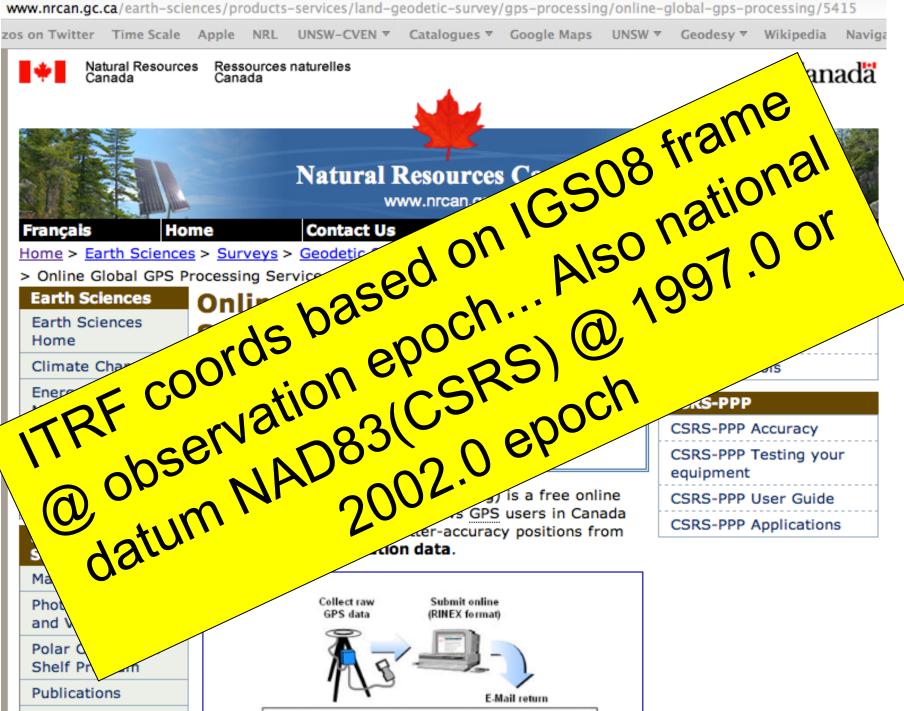
Trouble Shooting

45"

90"

135

- When submitting multiple names are not the same
- You have used the IGS na Geodetic Survey (NGS) fo
- The antenna height provi Antenna Reference Point


270'

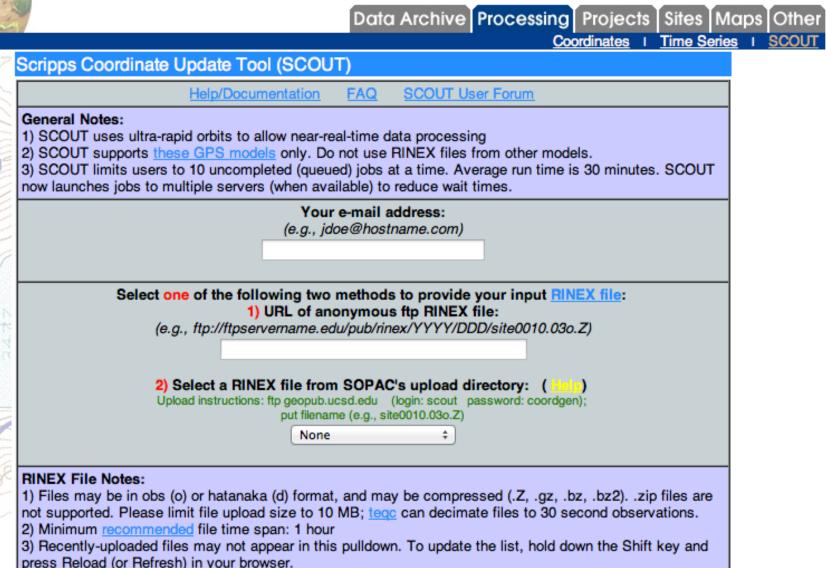
315

3601

360

..

- APPS will generate a time series of positions if your receiver was in motion
- · APPS has access to real-time GPS orbit and clock products so you never have to wait
- APPS is fast. Positioning is available in seconds



Home I Site Map I Contacts I Forums

search Quick links:

: + (

scripps orbit and permanent array center

The Value of Reference Frames to Society (1/2)

- Fundamental geoscience... solid earth geophysics, atmospheric, cryospheric & oceanographic processes, hydrology.
- Global Change studies... climate change (causes & effects), water cycle & mass transport changes, sea level rise, mesoscale circulation, GIA, polar studies.
 - Need continuity of ITRF to very high accuracy... to be provided by the full ensemble of space geodetic techniques
 - Primary signals are derived from (small) changes or trends in geodetic parameters
 - Use GNSS to connect to the ITRF
 - Extensive use of IGS products... but careful data processing strategies are necessary

The Value of Reference Frames to Society (2/2)

- **Geohazard research**... seismic, volcanic, landslip, storms, sea state, flooding, tsunami, space weather.
- **Geodetic reference frames**... *ITRF, national datums & SDI, gravity, timing.*
- **Engineering**... precise positioning/navigation, atmospheric sounding, georeferencing platforms, operational geodesy, radar & laser imaging/scanning, engineering geodesy, surveying.
 - > ITRF traceability... "fit for purpose" conditions apply
 - Long-term stability not necessarily important for many applications
 - Use GNSS to connect to the national or local datum, and used for densification
 - Extensive use of IGS & national/local CORS data... simplified data processing tools are often adequate

IAG / FIG / UNGGIM / UNICG / PhilGEGS

Reference Frame in Practice

Manila, Philippines 21-22 June 2013

Thank You

