IAG / FIG / UNGGIM / UNICG / PhilGEGS

**Reference Frame in Practice** 

Manila, Philippines 21-22 June 2013



# Gravity and World Height System

2013.06

## Kwon, Jay Hyoun









## Contents





## **I-1. Earth's Representation**

### Topographic Surface

- Real physical surface of the earth
- Irregular and complex

### Ellipsoid Surface

- Mathematically modeled, best fitted ellipsoid to the earth
- Useful for geospatial referencing
- Geoid
  - Equipotential surface of gravity field that *closely approximates the mean sea level*







01 Definition

02 Problem of Traditional Leveling

03 Geopotential Number

04 Heights

## **III-1. Definition**

### Definition of Height

- Height is the quality of being tall
- A height is a high position or place above the ground
- When an activity, situation, or organization is at its height, it is at its most successful, powerful, or intense

<Collins Cobuild Advanced Learner's English Dictionary>

#### Geometric Height

- Height difference between two points
- The elevation above reference surface (ex : ellipsoidal height)

### Physical Height (=Geopotential Height)

- The elevation related to earth gravity field
- Water always flow down

### Orthometric Height (= Geometric + Physical)

- The height of a point above sea level measured along the curved plumb line, starting from the geoid
- It is determined by leveling and gravity surveying







## **III-2. Problem of Traditional Leveling**

#### Traditional Leveling Survey

- Height differences between the consecutive locations of backward and forward rods correspond to the local separation between the level surfaces through the bottom of the rods, measured along the plumb line direction
- Problem
  - The sum of the measured height differences along the leveling path between point A and B is not equal to the difference in orthometric height between point A and B

$$\sum dh_{A} \neq \sum dh_{B} \neq H$$





OF SEOUL

7

## **III-3. Geopotential number**

#### Necessity of Geopotential Number

- Orthometric heights are not constant on the equipotential surface
- Points on the same level surface would have different orthometric height
- Thus, alternative concept independent on the path of integration is necessary

### Geopotential Number (C)

 Potential difference between the geoid level W<sub>0</sub> and the geopotential surface W<sub>P</sub> through point P on the Earth surface

$$\int_{0}^{P} gdh = C = W_0 - W_P = g_m \times dh$$

where, g is the gravity value along the leveling path

dh is height difference calculated based on leveling data

 $g_m$  is mean value of gravity along dh

- Geopotential number is constant for the geopotential (level) surface
- Geopotential numbers can be used to define height and are considered a natural measure for height





## **III-4. Heights**

## Height = C / gravity

### Orthometric Height

- Height measured along the curved plumb line with respect to geoid level
- Both physical and geometric aspect are exist

$$H = C / g_m$$

### Normal Height

- Height measured along the normal plumb line (does not depend on crustal density)
  - "normal" refers to the line of force direction in the gravity field of the reference ellipsoid
- Both physical and geometric aspect are exist

 $H = C / \gamma_m$ 

### Dynamic Height

- Use normal gravity,  $\gamma_{45^{\circ}}$ , defined on the ellipsoid at 45 degree latitude
- No geometric meaning (only physical)
- Thus, water always flow from one point (high) to the other (low point)

$$H = C / \gamma_{45^{\circ}}$$

9







04 Issues on Geoid Construction

05 Korean Geoid Construction

## **II-1. Gravity and Potential**

## • Gravity ( $\vec{g}$ )

- The force acting on a body at rest on the Earth's surface
- Sum of gravitational force(∇V) and the centrifugal force(*ā*) of the Earth's rotation

$$\vec{g} = \nabla V + \vec{a}$$

where 
$$\vec{g} = \nabla W \equiv \left(\frac{\partial W}{\partial x} \quad \frac{\partial W}{\partial y} \quad \frac{\partial W}{\partial z}\right)$$
,  $\nabla V = G \iiint_{earth} \rho \nabla \frac{1}{l} dv$ ,  $\vec{a} = \left(\omega_e^2 x \quad \omega_e^2 y \quad 0\right)$ 

### •Gravity Potential (W)

- The Potential associated with the gravity
- Sum of the potentials of gravitational force(V) and centrifugal force( $\Phi$ )

$$W = V + \Phi$$

where, 
$$V = G \iiint_{earth} \frac{\rho}{l} dv$$
,  $\Phi = \frac{1}{2} \omega_e^2 (x^2 + y^2)$ 



## **II-2. Level surfaces and Geoid**

#### Level Surfaces (=Equipotential Surfaces)

• The surfaces on which the *potential(W) is constant* 

W(x, y, z) = const

- The gravity vector is always perpendicular to a level surface
- Level surfaces are not parallel (in general) because  $\nabla W = \vec{g}$  varies along the surfaces

#### Geoid

- Equipotential surface of gravity field that *closely approximates the mean sea level*
- It is reference surface for height



Heiskanen and Moritz (1967), Physical Geodesy





## **II-3. Geoid Modeling**

## **Key Elements**







## Global Gravitational Model (1)

### Definition

- *Mathematical approximation* to the external gravitational potential of an attracting body
- Set of numerical values for certain parameters and statistics of the errors

$$\Delta g = \frac{GM}{R^2} \sum_{n=2}^{N_{\text{max}}} (n-1) \sum_{m=0}^{n} (\bar{C}_{nm} \cos m\lambda_p + \bar{S}_{nm} \sin m\lambda_p) \bar{P}_{nm} \sin \phi_p$$

where,  $GM = 3,986,005 \times 10^8 m^3 / s_r^2$ , R = 6,371,008.7714m, n,m: degree/order  $\overline{C}_{nm}, \overline{S}_{nm}$  and  $\overline{P}_{nm}$ : normalized spherical harmonic coefficients and Legendre function  $\phi_P, \lambda_P$ : position of point P

### Usage / Applications

- Geoid undulation computations
- Orbit determination
- Trajectory determination of airplanes and missiles
- Oceanographic applications (ex: dynamic ocean topography estimation, ocean circulation)
- Geophysical prospecting applications (ex: underlying density distribution determination)





## Global Gravitational Model (2)

#### Base Data

- Satellite tracking data from space missions(CHAMP, GRACE, GOCE)
- Gravity data : altimeter and ground gravity data



15





## Global Gravitational Model (3)

#### Models

- Model type : satellite-only, combined model (satellite + altimeter + ground gravity)
- no. models : over 100 models (first model : SE1 developed in 1996)
- New models based on the GOCE satellite data are being produced

unit : m

| Madal        | Veer | d / a | Data                       | Precision |           |       |
|--------------|------|-------|----------------------------|-----------|-----------|-------|
| Model        | fear | a/o   | Data                       | Korea     | Australia | Japan |
| EIGEN-6C2    | 2012 | 1949  | S(Grace, GOCE), G, A       | 0.066     | 0.214     | 0.080 |
| GOCO03S      | 2012 | 250   | S(Grace, GOCE, CHAMP, SLR) | 0.251     | 0.355     | 0.500 |
| EIGEN-6C     | 2011 | 1420  | S(Grace, GOCE), G, A       | 0.068     | 0.219     | 0.082 |
| GOCO02S      | 2011 | 250   | S(Grace, GOCE, CHAMP, SLR) | 0.271     | 0.371     | 0.516 |
| EGM2008      | 2008 | 2190  | S(Grace), G, A             | 0.061     | 0.217     | 0.083 |
| ITG-Grace03  | 2007 | 180   | S(Grace)                   |           | 0.603     | 0.752 |
| EIGEN-GL04C  | 2006 | 360   | S(Grace, Lageos), G, A     |           | 0.244     | 0.321 |
| EIGEN-GL04S1 | 2006 | 150   | S(Grace, Lageos)           |           | 0.464     | 0.952 |
| GGM02C       | 2004 | 200   | S(Grace), G, A             |           | 0.376     | 0.555 |
| GGM02S       | 2004 | 160   | S(Grace)                   |           | 1.356     | 1.030 |
| PGM2000A     | 2000 | 360   | S, G, A                    |           | 0.286     | 0.362 |
| EGM96        | 1996 | 360   | EGM96S, G, A               |           | 0.298     | 0.364 |
| OSU91A       | 1991 | 360   | GEMT2, G, A                |           | 0.453     | 0.561 |





## **Terrain Data**

#### Type

- Local topography : generated by local government office
- Global topography : generated by research institute, cover whole of the world (e.g. SRTM)

### Necessity and Importance

- To remove and restore terrain effect in geoid modeling
- Terrain correction model
  - 1 Airy-isostasy : terrain reduction based on airy-isostasy mass model
  - 2 RTM (Residual Terrain Model) : terrain effect reduced at the mean elevation surface
  - 3 Helmert 2<sup>nd</sup> Condensation : terrain mass condensed into a surface layer (Fave <Airy-isostasy>







## **Gravity Data : Ground**

### Method

- Absolute : directly determine absolute gravity
- Relative : measure the difference of gravity and calculate the absolute gravity depending on the known point



• Instruments : absolute gravimeter, relative gravimeter



- Manufacturer : Micro-g LaCoste
- Model : FG5, FG5-X, A-10
- Reading Resolution : 0.002mGal
- Precision : 0.15mGal/ $\sqrt{Hz}$



- Manufacturer : Micro-g LaCoste
- Model : CG-05
- Reading Resolution : 0.001mGal
- Precision : 0.005mGal

### • Procedures of data processing :

Tide correction ► Instrument height correction ► Drift correction ► Atmospheric correction

► Free-air / Bouguer correction





## **Gravity Data : Airborne**

## Principle

 Calculate the gravity by subtracting airborne gravimeter measurement from acceleration derived from GPS

$$g = g_{airborne}^* - a_{GPS}$$

- Advantages : cost and time effective, consistent data quality
- Instruments



- Manufacturer : Micro-g LaCoste
- Model : TAGS-6
- Reading Resolution : 0.01mGal
- Static Repeatability : 0.02mGal
- Accuracy : 0.6mGal or better

### • Procedures of data processing :

k-factor correction ► Eötvös correction ► Cross-coupling correction ► Drift correction

► Lever-arm correction ► Filtering ► Free-air / Bouguer correction





GPS satellites



## Gravity Data : Shipborne

## Principle

 Calculate the gravity by subtracting shipborne gravimeter measurement from accelerometer derived from GPS

$$g = g_{shipborne}^* - a_{GPS}$$

- Advantages : more dense and precise than altimeter data
- Instruments
  - Manufacturer : Micro-g LaCoste
  - Model : Air-Sea Gravity System
    - Reading Resolution : 0.01mGal
    - Static Repeatability : 0.05mGal
    - Accuracy : 1mGal or better

- Manufa - Model
- Manufacturer : ZLS
  - Model : Dynamic Gravity Meter
  - Reading Resolution : 0.01mGal
  - Static Repeatability : <0.1mGal
  - Accuracy : 1mGal

### • Procedures of data processing :

Tide correction ► Drift correction ► Removal of turning point ► Filtering ► Eötvös correction

► Cross-over point adjustment ► Free-air / Bouguer correction







## **GPS/Leveling Data**

Definition

Data having both ellipsoidal and orthometric height information

 $N_{GPS} \simeq h - H$ 

• Role of the Data : verification of geoid, basic data for hybrid geoid calculation





## **II-3. Geoid Modeling (Algorithm)**

## Algorithm (1)

#### Data Processing

- Global Gravitational Model : calculation of gravity anomaly and geoid at certain degree and order
- Gravity data : error sources correction, calculation and verification of gravity anomaly
- Topography data : extraction and verification of DEM

#### Data Combination

- Necessity : different resolution and precision of gravity data
- Methods
  - ① Weighted Mean
  - 2 LSC(Least-Square Collocation)
- Key of the study
  - ① Selection of gravity data considering distribution and quality
  - 2 Removal of bias among gravity data





**II-3. Geoid Modeling (Algorithm)** 

## Algorithm (2)





## **II-3. Issues on Geoid Construction**

#### Issue 1 : Downward continuation for airborne gravity data

- Unstable procedure compared to upward continuation
- Methodology : Poisson's integral, least-square collocation, radial basis function,

1st-order and multiple-order gradient formulation

### Issue 2 : Data fusion of various gravity data

- Different factors : distribution, quality, mass attraction, levels of measurements
- Aliasing effect should be considered





## **II-4. Korean Geoid Construction (1)**

## Data

- Global Gravitational Model : EGM2008
- Topography Data : NGII, SRTM
- Gravity Data : ground, airborne, DTU10(Ocean)





**II-4. Korean Geoid Construction (2)** 

## **Algorithm and Geoid**

• Geoid Calculation Method : remove and Store, FFT, LSC for downward continuation



• Precision of Gravimetric geoid with respect to GPS/Leveling data : 5.85cm

### Precision of Hybrid geoid

- Absolute : 3.33cm (half-fitting : 3.60cm)
- Relative (baseline = 15km) : 2.74cm







03 WHS and APRHSU

04 Issues of Height Unification

05 Applications

## **IV-1. Necessity and Objectives (1)**

## The vertical component plays a special role for the global monitoring of the topography of the Earth body

- Sea level change
- Change of the sea surface topography
- Post glacial uplift
- Ice melting etc.

There is no vertical reference surface which is suitable for all applications and users



Ihde (2010), Realization of a Global Unified Height System and its advances for Hydrographic Survey and for Coastal Mapping, HYDRO 2010





**IV-1. Necessity and Objectives (2)** 

## **Background and Necessity**

- Disadvantages of the existing height systems = Discrepancies
  - Discrepancies can reach up to +/- 2m in a global frame
  - Source of discrepancies : error propagation of spirit leveling with the distance,

applying different gravity reduction methods

- They do not allow the data exchange in international projects, because they are only compatible with themselves
- They do not support the reliable realization of h=H+N in world-wide scale

## Objectives

- Supports geometrical (h) and physical heights (H), as well as their combination (h=H+N) with a cm precision
- Globally allows the unification of the existing physical height systems
- Provides high-accuracy and long-term stability of the vertical/radial components with cm accuracy





## **IV-2. Methodology (1)**

#### • Case1 : Classical approach

- Data : spirit leveling data, global gravitational model or local gravity data
- Methodology : adjust leveling network and determine local equipotential surface



- Limit : apply only on continents
- Example : EVRF2007
  - 27 European countries
  - 7,939 nodal points and 10,347 measurements were used
  - Geopotential numbers and normal heights were calculated
  - 13 points were used for fitting to the :  $\sum_{i=1}^{13} (c_{EVRF2000} c_{EVRF2007}) = 0$  level of EVRF 2000





## **IV-2. Methodology (2)**

#### Case2 : General approach

- Data : GNSS, spirit leveling data and global gravitational model
- Methodology : calculate the local geoid based on GNSS and leveling data determine local offset with respect to global geoid

$$H_{0,VRF} = h_{i,ITRF} - H_{i,VRF} - N_{i,GGM}$$



• general case for realization and unification (cost and time effective)

Ihde (2010), Realization of a Global Unified Height System and its advances for Hydrographic Survey and for Coastal Mapping, HYDRO 2010





## **IV-2. Methodology (3)**

#### Case3 : Oceanographic approach

- Data : mean sea surface topography, tide gauge observations
- Methodology : calculate the local mean sea level based on tide gauge determine local offset with respect to mean sea surface topography

$$H_{0,VRF} = \left(h_{MSS}^{TG} - N^{TG}\right) - H_{MSS}^{TG} + \Delta H_{TG} = H_{MST}^{Mod} - H_{MSS}^{TG} + \Delta H_{TG}$$



• Limit : apply only tide gauge observations available

Ihde (2010), Realization of a Global Unified Height System and its advances for Hydrographic Survey and for Coastal Mapping, HYDRO 2010



OF SEOUL

IV-3. WHS and APRHSU (1)

## WHS (World Height System)

Proceed by GGOS of the IAG(International Association of Geodesy)

### GGOS (Global Geodetic Observing System)

- Established by IAG in July 2003
- Since April 2004, GGOS represents IAG in the Group on Earth Observation (GEO) and GGOS is IAG's contribution to the GEOSS(Global Earth Observation System of Systems)
- Theme 1 of GGOS : Unified Global Height System

| A                                                                                                       | Gle                                            | abal Geodet                                                                                                        | ic Observin                                                                                                                    | System                                                                                                       | THE REAL PROPERTY AND A DECEMBER OF A DECEMB |
|---------------------------------------------------------------------------------------------------------|------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| GØÓ                                                                                                     | S                                              |                                                                                                                    |                                                                                                                                | 5 System                                                                                                     | IAG                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| HOME                                                                                                    | About GGOS                                     | Applications                                                                                                       | Activities                                                                                                                     | News                                                                                                         | GGOS Portal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                         |                                                |                                                                                                                    |                                                                                                                                |                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| APPLICATIONS                                                                                            |                                                | Unified                                                                                                            | Global Height Sy                                                                                                               | stem - GGOS Th                                                                                               | eme 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| APPLICATIONS<br>Mass Transport                                                                          | The defi                                       | Unified                                                                                                            | Global Height Sy                                                                                                               | vstem - GGOS Th                                                                                              | eme 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| APPLICATIONS Mass Transport World Height System                                                         | The defined                                    | Unified<br>nition and realization of<br>S (Global Geodetic Ob                                                      | Global Height System) In the                                                                                                   | vstem - GGOS Th<br>tem (WHS) is a funda                                                                      | eme 1<br>mental requirement<br>RS/ITRF provides a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| APPLICATIONS<br>Mass Transport<br>World Height System<br>Geohazard                                      | The defin<br>of GGOS<br>high pre               | Unified<br>nition and realization o<br>S (Global Geodetic Ob<br>cision geometrical refe                            | Global Height System<br>of a World Height System<br>serving System). In the<br>erence frame, the WH                            | vstem - GGOS Th<br>tem (WHS) is a funda<br>te same way as the IT<br>IS shall provide the co                  | eme 1<br>mental requirement<br>RS/ITRF provides a<br>prresponding high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| APPLICATIONS<br>Mass Transport<br>World Height System<br>Geohazard<br>Sea Level Rise and<br>Variability | The defin<br>of GGOS<br>high pre-<br>precision | Unified<br>nition and realization o<br>S (Global Geodetic Ob<br>cision geometrical refe<br>n physical reference fr | Global Height System<br>of a World Height System<br>oserving System). In the<br>erence frame, the WH<br>ame for studying the s | rstem - GGOS Th<br>tem (WHS) is a funda<br>te same way as the IT<br>IS shall provide the co<br>system Earth. | eme 1<br>mental requirement<br>RS/ITRF provides a<br>prresponding high                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |





**IV-3. WHS and APRHSU (2)** 

## **UN-GGIM-AP and APRHSU**

• APRHSU (Asia-Pacific Regional Height System Unification) is a one of the project of Working Group 1 in UN-GGIM-AP







**IV-3. WHS and APRHSU (3)** 

## **Work Plan of APRHSU**

#### Purpose

- Encourage data sharing and facilitate technical exchange towards height system development
- Mission
  - Data Sharing : tide-gauge observations, GNSS observations at tide-gauges,

geodetic leveling, terrestrial gravity observations

Technical Exchange : geoid determination, height system definition

#### Considerations

- Encourage participation of the organizations from many countries in Asia-Pacific region
- Develop possible project to support APRHSU or to utilize the product of APRHSU.

### Schedule

- ~ June, 2013 : organize the steering committee
- ~ July, 2013 : prepare and disseminate call for participation on APRHSU
- ~ August, 2013 : prepare questionnaire to collect information
- August, 2013 ~ : collect data related to the height system





## **IV-4. Issues of Height Unification (1)**

## Data

### Status Investigation and Data Collection

- Target data : tide gauge, GNSS, spirit leveling, gravity data
- Survey entry : history, observer information, number of data, distribution, quality
- Questionnaire survey

### Data Standardization and Database Construction

- Data format : naming, significant digit etc. (e.g. latitude and longitude : float, 6 digit)
- Database construction depending on country or type of data

### Data Sharing and Service

- Database searching and up/download of data
- Result display on the map
- Setup the security regulation of data







IV-4. Issues of Height Unification (2)

## **Technical Exchange**

#### Determination of Methodology

- Methodology : classical, general, oceanographic approach
- Analysis of strengths and weakness
- Feasibility test considering status of data







GGOS, Measuring and Modeling the Earth's System, http://192.106.234.28/Applications/Applications.html





IAG / FIG / UNGGIM / UNICG / PhilGEGS

**Reference Frame in Practice** 

Manila, Philippines 21-22 June 2013



# THANK YOU!

# **Question?**







