$(\mathbf{\hat{n}})$

Sponsors:

An Improved Vertical Datum: a New Zealand Case Study Graeme Blick Chief Geodesist National Geodetic Office

With acknowledgement to the NZ Vertical Datum Improvement team:

Matt Amos | Land Information New Zealand Rachelle Winefield | Land Information New Zealand Jack McCubbine | Land Information New Zealand Euan Smith | Victoria University of Wellington Fabio Caratori Tontini | GNS Science

Frimble

newzealand.govt.nz

- Introduction
- Traditional LevellinG Based datums
- New Zealand Vertical Datum 2009
- Vertical Datum IMPROVEMENT PROJECT NZVD 2016
- NATIONAL AIRBORNE GRAVITY SURVEY
- Summary

Introduction

- Vertical datum provides common reference surface
 - Essential for integration of geospatial data
- Geoid enables ellipsoidal height transformations
 - Geometric to gravimetric
 - Ellipsoidal orthometric

TRADITIONAL LEVELLING BASED DATUMS

FIG/IAG/UN-GGIM-AP/ICG/SLA Technical Seminar Vertical References Frame in Practice

Singapore, 27-28 July 2015

Levelling-based datums

- 13 levelling based datums
- Each connected to a tide separate tide gague based on "MSL"
- Not nationally consistent
- No national geoid
 - Need local transformations

Page 5

- Gravimetric geoid using gravity observations to model geoid
- Independent of leveling

NEW ZEALAND VERTICAL DATUM 2009

- Gravimetric quasigeoid computed from:
 - EGM2008

- Gravimetric quasigeoid computed from:
 - EGM2008
 - Land and sea gravity data

- Gravimetric quasigeoid computed from:
 - EGM2008
 - Land and sea gravity data
 - DNSC08 altimetry

- Gravimetric quasigeoid computed from:
 - EGM2008
 - Land and sea gravity data
 - DNSC08 altimetry
 - Digital elevation model

New Zealand Quasigeoid 2009

• Subtract EGM2008 to give residual gravity anomalies

- Subtract EGM2008 to give residual gravity anomalies
- Fourier transform to convert residual gravity to residual geoid

- Subtract EGM2008 to give residual gravity anomalies
- Fourier transform to convert residual gravity to residual geoid
- Add back EGM2008 geoid

- Subtract EGM2008 to give residual gravity anomalies
- Fourier transform to convert residual gravity to residual geoid
- Add back EGM2008 geoid
- Result is NZGeoid2009

- Computation area: 160° E - 170° W, 25° S - 60° S
- ~40m range over NZ
- Provided on 1' x 1' grid ~1.9 km over NZ
- NZGeoid2009 value linearly interpolated from grid
- Geoid changes smaller than
 2 km will not be represented

New Zealand Vertical Datum 2009

- Based on NZGeoid2009
- Includes official offsets to 13 main local vertical datums
- Normal-orthometric heights
- Transformation to GRS80
- 8cm nominal accuracy

Datum	Offset	Std Dev		
One Tree Point 1964	0.06	0.03		
Auckland 1946	0.34	0.05		
Moturiki 1953	0.24	0.06		
Gisborne 1926	0.34	0.02		
Napier 1962	0.20	0.05		
Taranaki 1970	0.32	0.05		
Wellington 1953	0.44	0.04		
Nelson 1955	0.29	0.07		
Lyttelton 1937	0.47	0.09		
Dunedin 1958	0.49	0.07		
Dunedin-Bluff 1960	0.38	0.04		
Bluff 1955	0.36	0.05		
Stewart Island 1977	0.39	0.15		

Vertical Datum IMPROVEMENT PROJECT – NZVD 2016

NZVD2009 limitations

- Irregular gravity coverage
- Computed from existing gravity data
- Gravity not collected for geoid determination

NZVD2009 limitations

- Sparse GNSSlevelling data
- Extensive precise levelling coverage

NZVD2009 limitations

- Simplistic offset modelling
- Other options available
- Multiple datums confusing

FIG/IAG/UN-GGIM-AP/ICG/SLA Technical Seminar Vertical References Frame in Practice

Singapore, 27-28 July 2015

Is this a problem?

- Confusion still exists with multiple datums
- Datum accuracy insufficient
- Timely disaster response difficult
- Heights becoming more important

Disaster recovery

- Heights are important after disaster events
- Expectation that height system exists to aid recovery
- Quick re-establishment of height system necessary
- Not efficient with levelling based datum

3D cadastre

- Heighted boundaries
 - Variety of datums used
 - Often inconsistent with other services
- Geoid not accurate enough

3D cadastre

- Heighted boundaries
 - Variety of datums used
 - Often inconsistent with other services
- Geoid not accurate enough
- Future cadastre may need greater height consistency
 - All rights shown together
 - All measurements 3D

User Requirements Accuracies

Cadastral

Local Government

Hydrographic Charting

Recreational GNSS

Scientific Monitoring

GIS Community

Topographic Mapping

An improved vertical datum

- Better accuracy
- Better links to existing datums
- Better services to access datum

FIGERELAND AUTHORITY

Better accuracy

- Updated national geoid
- 3cm in developed areas
- National airborne gravity coverage
- New global models and computation techniques

Better links to existing datums

- Present approach simplistic
- Accuracy improved by GNSS-levelling
- Alternative modelling approaches

FIG/IAG/UN-GGIM-AP/ICG/SLA Technical Seminar Vertical References Frame in Practice

Singapore, 27-28 July 2015

Better services to access datum

BWKW: Mark details

			MARK IDEN	TIFICATIO	N				
Code: Name:	BWKW SM 27	SWKW SM 271 SO 49263			C	Country: Land District:		New Zealand North Auckland	
Alternatives.				To sh Nž			BA31 5919051 1743941		
			NZGD 2000 C		TES				
Latitude:		36° 51' 48.64	4528" S Ord	er:	<u>4</u>		His	storical	
Longitude: Ellipsoidal he	ight (m)	174° 36' 53.2 : 53.357	29972" E Autl Refe	norised: erence:	16-Aug-20 199910102 4th Control	00 : Auckland	va		
Circuit		Northing (m)	Easting (m)	Sc	ale Factor	Converger	псе		
Mount Eden Circuit 2000)	801 788.276	386 682.7	13 0.9	9999022	-0° 05' 22	2"	<u>Historical</u> <u>values</u>	
			ORTHOMET	RIC HEIGH	ITS				
Height datum Auckland Ve	ertical D	atum 1946	Height (m) 19.510	Order <u>2V</u>	Calculat 27-Nov	ion Date - 1974	Refe SO 4	rence 19263	

NATIONAL AIRBORNE GRAVITY SURVEY

Airborne Gravity Collection

Collaboration with:

Victoria University of Wellington GNS Science

2014

Gravity Flights completed

2015

- LVD offset improvement
- Geoid computation
- Transformation tools

2016

New vertical datum

Gravity collection

- Piper Chieftain
 - 6 hour endurance
 - 130 knots
- L&R Air-Sea Gravimeter
 - 2 mGal repeatability

Collection challenges

- Wind, rain, fog
- Aircraft mechanicals
- Limited daylight •
- Average of 3 flight days per week

Page 34

FIG/IAG/UN-GGIM-AP/ICG/SLA Technical Seminar Vertical References Frame in Practice

Singapore, 27-28 July 2015

Flight lines

- 50,000 line km
 - 120 flight lines at 10k spacing
 - 20 tie lines at 150k spacing
 - 2 calibration lines
- 4 base airports
- Two campaigns
 - August October 2013
 - February June 2014
- 75 flights
- 425 flying hours

FIG/IAG/UN-GGIM-AP/ICG/SLA Technical Seminar Vertical References Frame in Practice

Singapore, 27-28 July 2015

Flight Tasks

- Aligned to topography
- Flying height 3,500 13,500 feet

Free Air Anomaly – EGM2008

Free Air Anomaly – Airborne Data

Page 38

FIG/IAG/UN-GGIM-AP/ICG/SLA Technical Seminar Vertical References Frame in Practice

Singapore, 27-28 July 2015

Data Combination

Combined aitborne and terrestrial gravity observations (mGal) using least squares collocation

4.8

1.2

1.4

1.6

Easting (NZTM)

1.8

2.2 x 10

2

-50

-100

Data Combination

Difference between combined airborne/terrestrial data and EGM2008 (mGal)

Highlights the fine scale structure of the NZ gravity field and that the main areas of difference are in the mountainous parts of the South Island

SUMMARY

Summary

- Airborne gravity campaign is now complete
- Should deliver 3 cm geoid
- Improvements to LVD offsets also underway
- Updated NZ vertical datum expected in 2016

Recovery from a natural disaster

QUESTIONS

