

New Zealand Reference Frame Case Study

Graeme Blick Chief Geodesist Land Information New Zealand

Fundamental role of the reference frame

Requirements of a National Reference System

- A coordinate framework that is accurate, stable, reliable and accessible
- Direct linkage to International Reference Frames

Land Information **Frica**

Toitū te whenua

- Simple for users to connect to and use
- Physical infrastructure may include GNSS CORS and traditional geodetic survey marks
- Systems and tools to allow connection to the coordinate reference system and transformation of legacy data to the current reference system

Geosystems

- Tectonic setting
- Geodetic datum
 - PositioNZ
 - Deformation models
- Vertical datum
 - NZVD2009
 - NZVD2016
 - NZIVD2018
- Future Strategy

FIG/IAG/UN-GGIM- AP/UN-ICG/NZIS Technical Seminar Reference Frame in Practice

Christchurch, New Zealand, 1-2 May 2016

Tectonic setting of New Zealand

Significant historic earthquakes

West Wairarapa 1855

Napier 1931

Edgecumbe 1987

Murchison 1929

Inangahua 1968

Christchurch 2011

Significant volcanic events

Mt Tarawera 1886

White Island

Mt Ruapehu

Mt Ngauruhoe

NORTH ISLAND

ORDER TRIANGULAT

Early triangulation surveys

Commenced in the 1880s

1st order control completed 1940s for NZGD49

Provided a foundation for measuring crustal deformation

Limitations with NZGD49

- Regional distortions up to 5m prese
- Built up in a piecemeal fashion
- Incompatible with global systems
- It is of limited spatial coverage
- It is static

Introduction of NZGD2000

1998 – NZ introduced NZGD2000 (ref epoch 1 Jan 2000)

- geocentric origin
- aligned with the ITRS
- ITRF96 with epoch 2000.0 coordinates

NZGD2000 - semi-dynamic datum

 generalised motion of points modelled using a deformation model

Introduction of NZGD2000

Semi-dynamic datum

- current deformation model has horizontal constant velocities only
- initially generated using repeat surveys between 1992 and 1998
- enables propagation of coordinates and observations between reference epoch and observation epoch
- for many uses has the appearance of a static datum

NEW ZEALAND **VELOCITY MODEL** from 1990-98 GPS data Version 2.1 - Oct 1998 Australian Plate **Pacific Plate** 50 mm/yr km 400 200

Sponsors:

Trimble.

FIG/IAG/UN-GGIM- AP/UN-ICG/NZIS Technical Seminar Reference Frame in Practice

Christchurch, New Zealand, 1-2 May 2016

Measuring deformation - strain

Connecting to the datum

100,000+ control marks

Connecting to the datum

PositioNZ Network

35 on the mainland of NZ1 on the Chatham Islands3 in Antarctica

Auckland - stable

FIG/IAG/UN-GGIM- AP/UN-ICG/NZIS Technical Seminar Reference Frame in Practice

Christchurch, New Zealand, 1-2 May 2016

Gisborne – slow earthquakes

Christchurch, New Zealand, 1-2 May 2016

Christchurch – Canterbury earthquakes

Fiordland postseismic recovery

Christchurch, New Zealand, 1-2 May 2016

Contribution to Asia Pacific Reference Frame (APREF)

National deformation monitoring network

National Deformation MonitoringNetwork (NDMN),- campaign stations measured

every 8 years.

Enhancing the Deformation Model

Horizontal model only Continuously updated and refining

FIG/IAG/UN-GGIM- AP/UN-ICG/NZIS Technical Seminar Reference Frame in Practice

Christchurch, New Zealand, 1-2 May 2016

Where are we at

What has gone well

- Good user acceptance
- The incorporation of a deformation model in NZGD2000 has enabled the life of the datum to be lengthened and new observations to be integrated with old observations
- Accuracy of datum has been maintained

Issues

- Managing the deformation model
- Accuracy of deformation model versus CORS real time positions
- Managing the spatial alignment of the cadastral system
- Misalignment of readjusted historic geodetic control with new surveyed geodetic control

Vertical datums - Traditional levelling based datums

- 13 levelling based datums
- Each connected to a tide separate tide gauge based on "MSL"
- Not nationally consistent
- No national geoid

Sponsors:

Need local transformations

Land Information

Toitū te whenua

Geosystems

Trimble.

New Zealand Vertical Datum 2009

- First national vertical datum
- Based on NZGeoid2009
- 6 cm nominal accuracy
- 3-15 cm local accuracy
- Need better than 3 cm in developed areas
- Includes official offsets to 13 main local vertical datums

Datum	Offset	Std Dev
One Tree Point 1964	0.06	0.03
Auckland 1946	0.34	0.05
Moturiki 1953	0.24	0.06
Gisborne 1926	0.34	0.02
Napier 1962	0.20	0.05
Taranaki 1970	0.32	0.05
Wellington 1953	0.44	0.04
Nelson 1955	0.29	0.07
Lyttelton 1937	0.47	0.09
Dunedin 1958	0.49	0.07
Dunedin-Bluff 1960	0.38	0.04
Bluff 1955	0.36	0.05
Stewart Island 1977	0.39	0.15

Accuracy Improvement

- NZGeoid2009 based on existing gravity data
- Irregular and biased locations
- Gap in near-shore areas
- Airborne gravity best solution

New Zealand Vertical Datum 2016

- To be published in June 2016
- Based on NZGeoid2016
- 3 cm nominal accuracy
- Transformation surfaces to local datums

New Zealand Integrated Vertical Datum 2018?

- Connecting physical datum to geometric datum and providing transformations
- Seamless mapping of the land and sea

The future

Vision: Accurately Positioning New Zealand for the Future

Strimble

Vision and Goals

Vision

Accurately positioning New Zealand for the future

Ten Year Goals

- 1. Enable the efficient definition of three-dimensional property rights through an accessible geodetic system
- 2. Measure temporal changes to the shape of the Earth's surface, model the gravity field and incorporate the effects into our reference frames
- 3. Support the maintenance of global reference frames and the connection of New Zealand's geodetic framework to them
- 4. Provide tools and services that enable accurate and reliable real-time positioning whenever and wherever it is required
- 5. Provide strong leadership in the development and use of the positioning system in New Zealand and support its development in the South-West Pacific

10 years from now

Positioning has become truly ubiquitous

Our challenges are to:

- provide a system which is invisible to users
- manage the dynamics
- remove complexity
- maintain accuracy
- be truly global
- realise real time coordinates
- be leaders and not followers
- embrace new technologies
- decide to what extent we support the mass market

i svezealanc.govi.nz