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ABSTRACT 

Sets of geodetic observations often contain groups of observations which differ from each other in the 

functional model (or at least in the values of the parameters of such a model). Sets which include the 

observations from various measurement epochs might be a practical example in such a context. From the 

conventional point of view, for example in the case of the least squares estimation, subsets in question should 

be separated before the parameter estimation process. Another option would be an application of Msplit 

estimation which is based on a fundamental assumption that each observation is related to several competitive 

functional models. The optimal automatic assignment of every observation to the respective functional model 

is one of the objectives of the estimation process. Msplit estimates of the model parameters are obtained during 

the iterative process which is based on two (or more) weight functions which also determinate the method 

properties. Considering deformation analysis, each observation is assigned to the set of the functional models, 

each of which is related to one measurement epoch. The paper focuses on the efficacy of the method in 

detecting point displacements. The research is based on example observation sets and with the application of 

Monte Carlo simulations. The results are compared with the classical deformation analysis, which shows that 

Msplit estimation might be an interesting alternative for the conventional methods. 
 

I. INTRODUCTION AND MOTIVATION 

Consider the classical functional model of geodetic 

observations which is given for 1, ,l q=  different 

measurement epochs, namely 
 

l l l l
= +  = +y AX v y A X v  (1) 
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X X=X  are parameter 

vectors; 
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v v=v  are vectors of random errors, 

and 
,ln r

l
RA are known  coefficient matrices. Such 

models are the basis for deformation analysis, namely 

for determining the shifts 
( , )k l l k

 = −X X X  between the 

epochs l and k (for example, the changes of the point 
coordinates between such epochs). 

The vectors 
( , )k l

X  can be estimated by applying 

different methods or strategies (e.g., Pelzer, 1971; 
Caspary et al., 1990; Hekimoglu et al., 2010). The least 
squares method (LS-method) is still the most popular 
approach in such an analysis, note that LS-estimates are 
often supplemented with respective statistical tests 
(e.g., Niemeier, 1981; Setan and Singh, 2001; Denli and 

Deniz, 2003). However, some unconventional methods 
are also in use, for example, robust M-estimation 
(Chen, 1983; Caspary and Borutta, 1987) or  
R-estimation (Duchnowski, 2010, 2013; Duchnowski 
and Wiśniewski, 2014, 2017a, 2017b; Wyszkowska and 
Duchnowski, 2017). In the case of relative networks, 
one can also apply methods of free adjustment (e.g., 
Erdogan and Hekimoglu, 2014; Nowel and Kamiński, 
2014; Nowel, 2015; Amiri-Simkooei et al., 2017). Some 
methods as well as their properties are well known, 
other methods are still being researched. Msplit 
estimation surely belongs to the latter group. It was 
proposed by Wiśniewski (2009, 2010) and it was applied 
to some practical problems in which each observation 
could be assigned to several different functional 
models. For example, it was used in Laser Scanning Data 
Modeling (Janowski and Rapiński, 2013), deformation 
analysis (Duchnowski and Wiśniewski, 2012; 
Zienkiewicz, 2014; Wiśniewski and Zienkiewicz, 2016; 
Velsink, 2018) or robust estimation (e.g., Li et al., 2013). 
Automatic assignment of each observation to the best 
fitted model is one of the most important features of 
Msplit estimation. It is also very useful in deformation 
analysis, when the observation set might include 
observations from all measurement epochs (the set 
might be unrecognized mixture of such observations). 
Note, that it is usually no problem with separating 

mailto:zbyszekw@
mailto:zbyszekw@
mailto:andrzej.dumalski@
mailto:andrzej.dumalski@
mailto:robert.duchnowski@
mailto:robert.duchnowski@


4th Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece 
 

observations from different epochs and hence with 
separate analyses. However, there are some cases 
when application of Msplit estimation is advisable. For 
example, when a point displaces during an observation 
session, thus, one should consider two pseudo-epochs, 
and Msplit estimation allows us to estimate the 
parameters of the functional models for such pseudo-
epochs. Such models can also be applied when an 
observation set is disturbed by outliers (Zienkiewicz, 
2014; Wiśniewski and Zienkiewicz, 2016).   

The main properties of Msplit estimation are discussed 
in the papers cited above; that paper is focused on the 
efficacy of the method in estimating parameters of the 
competitive functional models, hence also estimating 
point displacements. The analyses are based on 
simulations of Crude Monte Carlo method and 
application of elementary functional models or models 
of a leveling network. The results are compared with 
the results of LS-method.   

 

II. THEORETICAL FOUNDATIONS 

Without loss of generality we can assume two 
measurement epochs, thus in the model of Eq. (1) we 
have 2=q . Then, the optimization criterion of  

LS-method and its solution can be written in the 

following way ( 1,2=l ) 
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where: lP  are respective weight matrices. The 

difference (1,2) ,2 ,1
ˆ ˆ ˆ = −LS LS LSX X X  is a LS-estimate of 

the shift (1,2)X .  

In the case of Msplit estimation, we assume that each 

observation belongs to either of two sets 1  or 2 ; 

however, there is one observation set 1 2 =   and 

one observation vector  nRy , 1 2= +n n n . There are 

two competitive functional models 
  

(1) (1)= +y AX v ,   (2) (2)= +y AX v           (3) 

 
with two competitive versions of the parameter X, 

namely (1)X  and (2)X  ( , n rRA , ( ) =rank rA ). The 

vectors (1) (2),  nRv v  are  two competitive versions of 

the observation errors related to all elements of the 
vector y. Note, that observations can be ordered within 
the vector y in any way; however, we can usually 

assume that  1 2[ , ]= T T T
y y y  and hence 1 2[ , ]= T T T

A A A . 

The similar assumptions can also be found in other 
estimation problems, for example cluster analysis (e.g., 
Sebert et al., 1998; Soto et al., 2007); or in a mixture 

model estimation applied in geosciences (e.g., Spurr, 
1981; Hsu et al., 1986). Such approaches can be 
regarded as alternative ones; however, we should have 
some understanding that they differ much in their 
general ideas. 

The optimization criterion for the squared Msplit 
estimation can be written in the following way 
(Wiśniewski, 2009; Zienkiewicz, 2018) 

 
2
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where: (1) (2)Diag( , )=P P P  is a combined weight 

matrix, *  is the Hadamard product. The solution can be 

found by zeroing the respective gradients ( )lg  of that 

function. Generally, for 1,2=l , one can write 
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Since those estimates are functions of the both 
competitive vectors (2)v̂  and (1)v̂ , then such a solution 

is asymptotic. The following iterative procedure can be 
applied to compute the sought estimates ( 1, ,=j m ) 

                                                
1 1 1

(1) (2) (1) (1)

1 1 1 1

(2) (1) (2) (2)
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+ + +

+ + + +
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The process stops when for each 1,2=l  it holds that 

( ) (1) (2)
ˆ ˆ( , ) =lg X X 0  and hence 1

( ) ( ) ( )
ˆ −= =m m

l l lX X X . Note, 

that another iterative process which uses both the 
gradients and the Hessians of (1) (2)( , ) X X , namely 

Newton’s method, can be found in (Wiśniewski, 2009, 
2010). Here, the shift (1,2)X  can be estimated by 

(1,2) (2) (1)
ˆ ˆ ˆ = −X X X . It is worth noting that (1,2)X  can 

also be estimated directly by applying Shift-Msplit 

estimation proposed by Duchnowski and Wiśniewski 
(2012). 

 

III. EMPIRICAL ANALYSES 

A. Elementary tests 

The elementary analysis is based on the univariate 
models and simulations of observations related to such 
models. Thus, 
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where: 
1[1 , ,1 ]=

l l

T

n n1 ; 1X  and 2X  are parameters 

that differ from each other in the shift  

(1,2) 2 1 = −X X X . The measurements, namely the 

elements of the vectors 1y  and 2y , are simulated by 

using the Gaussian generator ( ,1)randn n  of Matlab. 

We assume that 1 = , and the following theoretical 

values of the parameters: 1 0=tX  and hence 

2 1 (1,2) (1,2)= +  = t tX X X X . Considering LS-estimation 

of 1X  and 2X  we can apply the model of Eq. (7) or  

Eq. (1) where 
11 = nA 1  and 

22 = nA 1 . In the case of Msplit 

estimation we assume the model of Eq. (3) taking 

1 2[ , ]= T T T nRy y y , 1 2= +n n n  and = nA 1 . We also 

apply the iterative procedure of Eq. (6) taking  
LS-estimates as the starting point (note, that the 
starting point can usually be arbitrary).  

Let us now consider one example of observation 

simulation for which (1,2) 5 5X  = =  and 1 50n = , 

2 10n = . The parameter estimates together with the 

respective residuals are presented in Fig. 1. 
 

 

Figure 1. LS and Msplit estimates for example observation set 

 
Now, let us consider more simulated observation 

sets. By applying Crude Monte Carlo method (MC) for N 
simulations one can compute MC estimates by applying 
the formula  

                                                                     

1

1ˆ ˆ
N

MC i

i
N

 
=

=                            (8) 

 

where: ˆi  are the estimates obtained for ith 

simulation. The location of MC estimates for 5000N =  

and (1,2) 5X =  or (1,2) 20X =  is presented in Fig. 2. It 

shows that MC estimates which are obtained for both 
estimation methods are close to the respective 
theoretical values (considering the simulated standard 
deviation). Generally, LS estimates seem more 
satisfactory. Please note that results obtained for 

different values of the shift (1,2)X  indicate that Msplit 

estimation is more satisfactory for bigger shift than for 
the smaller one.  Thus, let us examine how efficient 
Msplit estimation is for different shifts. Let the measure 
of efficacy be defined in relation to LS estimates, thus 
let 
                                    

( ) ( ) , ( ) ,
ˆ ˆ ˆ ˆ( , ) ( ) ( )t t

l l LS l l l LS l lX X abs X X abs X X = − − −   (9) 

 

Note that, when ( ) ( ) ,
ˆ ˆ( , ) 0l l LS lX X  , then Msplit 

estimate is closer to the theoretical value than LS 
estimate. Now, we can define the following function of 
an elementary success of Msplit estimation 

                                    

( ) ,

( ) ( ) ,

( ) ,

ˆ ˆ1 ( , ) 0
ˆ ˆ( , )

ˆ ˆ0 ( , ) 0

l LS l

l l LS l
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for X X
s X X

for X X
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 
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

      (10) 

                                  
Application of MC simulations allows us to present 

the success rate (SR), which can be computed for 
different values of the shift (1,2)X  

                                           

( ) ( ) , ( ) ( ) ,

1
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i

l l LS l l l LS l

i

X X s X X
N


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where: ( ) ,
ˆ ˆ( , )i

l LS ls X X  is the value of Eq. (10) at ith 

simulation.  

 

Figure 2. Location of MC estimates  

for (1,2) 5X = or (1,2) 20X =  
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Note, that such an SR is defined in a very similar way to 
the mean success rate (MSR) given by Hekimoglu and 
Koch (2000). SRs for different (1,2)X  and for 5000N =  

simulations are presented in Fig. 3. 
 

 

Figure 3. SR of Msplit estimates (1)X̂  and (2)X̂ for growing 

value of (1,2)X  

 
B. Vertical displacement analysis 

Let us now consider the efficacy of Msplit estimates in 
more practical example, namely analysis of vertical 
displacements within the leveling network which is 
presented in Fig. 4. Such a network has already been 
under investigation in some previous papers 
(Wiśniewski and Zienkiewicz, 2016; Velsink, 2018).  

 

 

Figure 4. Tested leveling network 

 

The network consists of four reference points 

1 4, ,R R  with the known heights 
1 4

0R RH H= = = m 

and  five  object  points  1 5, ,P P .  We assume that each 

of the height differences 1 16, ,h h  is measured twice at 

each of two measurement epochs, and 2 =  mm is 

the known standard deviation of all measurements. We 
also assume that at the first epoch 

1 1,1 5,1[ 0, , 0]X 0
t TH H= = = = , where: ,1iH  is a height 

of the ith object point at the first epoch. The shift of the 
object points between the measurment epochs is given 

by (1,2) 1(1,2) 5(1,2)[ , , ]X
TH H =    where: 

(1,2) ,2 ,1i i iH H H = − . In the classical approach to 

estimation of the point displacements, we use the 
functional model of Eq. (1). Since all height differences 

are measured twice at two measurement epochs, 
namely we have two series of measurements at each 

epoch, then we should assume that 32
y l R , 

1, 5,[ , , ]X
T

l l lH H= , and 32,5

2A A 1 R =    where: 

16,5
A R  is a known coefficient matrix related to one 

series of measurements, 2 [1,1]1
T= and   is the 

Kronecker product. On the other hand, in the case of  
Msplit estimation we should apply the functional model 

of Eq. (3) for which we have 64

1 2[ , ]y y y
T T T R=  , 

64,5[ , ]A A A
T T T R =  , and 5

(1) (2),X X R  are the 

competitive versions of the parameter vector, hence 
64

(1) (2),v v R  are the respective competitive versions 

of the measurement errors. 
When analyzing the efficacy of Msplit estimation we 

can use two measures, namely the local measure of the 
distance between LS and Msplit estimates 
                                  

( ) ( ) ,

( ) ,

ˆ ˆ([ ] ,[ ] )

ˆ ˆ([ ] [ ] ) ([ ] [ ] )

X X

X X X X

l j l j LS l j

t t

l j l j LS l j l jabs abs

=

= − − −


  (12) 

 
as well as the global one 

                                                

( ) ( ) , ( ) ,
ˆ ˆ ˆ ˆ( , )X X X X X X

t t

l l LS l l l LS l l = − − −        (13) 

 

where: [ ] j• is jth element of the vector, and •  is the 

Euclidean norm. The local distance, which is just 
another form of Eq. (9), is related to a particular 
parameter, for example, a height of a displacing point. 
The global distance describes the whole parameter 
vector. Thus, we can define the local and global success 
rates in the following way 
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where: ( ) ( ) ,
ˆ ˆ([ ] ,[ ] )X X

i

l j l j LS l js  and ( ) ( ) ,
ˆ ˆ( , )X X

i

l l LS ls  are 

functions of an elementary success from Eq. (10) and 
indexed with the respective arguments.  

The empirical analysis, which is based on MC method 

for 5000N =  simulations, is carried out for several 

variants of the point displacements. Firstly, we assume 
that only the point 5P  is displaced. The respective MC 

estimates obtained for LS and Msplit estimations and 

5(1,2) 50H = − , 5(1,2) 100H = −  or 5(1,2) 200H = − mm 

are presented in Table 1 which also presents the local 
and global SRs. 

MC estimates are similar for both estimation methods 
and for stable points. SRs indicate that LS estimates are 
closer  to  the  theoretical values in the vast majority of 
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Table 1. MC estimates of the point heights and SRs for one unstable point 

5(1,2) 50H = −  5(1,2) 100H = −  5(1,2) 200H = −  

,1X̂LS  (1)X̂  ,2X̂LS  (2)X̂  ,1X̂LS  (1)X̂  ,2X̂LS  (2)X̂  ,1X̂LS  (1)X̂  ,2X̂LS  (2)X̂  

0.2 -3.1 0.4 2.9 -0.5 -1.1 -0.6 0.6 0.9 -1.8 -0.7 -0.4 

1.4 -1.2 -1.0 0.9 -0.4 -1.3 0.7 2.9 0.5 0.7 0.5 -0.8 

2.1 -0.6 -0.6 -0.6 0.1 -0.6 0.5 1.3 -0.3 -2.8 -0.1 1.1 

-0.8 -3.6 -0.6 0.6 1.1 -0.9 -1.0 1.2 0.0 -0.4 -1.5 1.5 

0.8 -1.9 -50.4 -49.1 0.3 -1.2 -99.8 -98.7 0.8 -0.8 -200.1 -199.7 

(1) 0.018 =

(1),5 0.172 =  

(2) 0.019 =  

(2),5 0.182 =  

(1) 0.020 =  

(1),5 0.177 =  

(2) 0.017 =  

(2),5 0.187 =  

(1) 0.025 =  

(1),5 0.171 =  

(2) 0.024 =  

(2),5 0.196 =  

 

the simulations. Note, that the local SRs which are 
obtained for the point 

5P  are much higher than the 

global ones. 
In the second variant, we assume that there are two 

unstable points, namely 
5P  and 

4P . The results, which 

are obtained for the different point shifts, are 
presented in Table 2. MC estimates obtained for both 
methods are also similar, here. Fig. 5 presents the LS 
and Msplit estimates which are obtained for all MC 
simulations. Generally, it confirms correctness of both 
estimation methods; however, differences between 
those two estimation methods are also apparent. The 
main difference is the dispersion which is bigger in the 
case of Msplit estimation, especially for the stable points, 
which suggest that the accuracy of Msplit estimation is 
worse than LS estimation. It is also worth noting that 
SRs of Msplit estimation achieve bigger values in this 
variant. In the case of the point 5P , the results of Msplit 

estimation are better than the results of the classical 
approach in almost one third of simulations. 

The results, which are presented here, show that both 
methods, namely LS and Msplit estimation, yield 
satisfactory solutions. However, such a conclusion is 
valid for the ordered observation sets, namely when 
each observation is properly assigned to its 
measurement  epoch.  If  such  a condition  is  not  met,  

  
Figure 5. LS and Msplit estimates of MC simulations  

( 4(1,2) 50H =  and 5,(1,2) 100H = mm) 

 
then the observation from another epoch will usually be 
regarded as an outlier. Since LS estimation as well as 
Msplit estimation are not robust against outliers, they 
both break down (please note, that Msplit estimation is 
generally not robust unless we introduce an additional 
virtual model for outliers). Note, that in the context 
addressed here, the outliers result from the assignment 
of an  observation  to  the  wrong  measurement  epoch 

 

Table 2. MC estimates of the point heights and SRs for two unstable points 

5(1,2) 4(1,2)50; 50H H = −  = −
 5(1,2) 4(1,2)100; 50H H = −  = −

 5(1,2) 4(1,2)200; 50H H = −  = −
 

,1X̂LS  (1)X̂
 ,2X̂LS  (2)X̂

 ,1X̂LS  (1)X̂
 ,2X̂LS  (2)X̂

 ,1X̂LS  (1)X̂
 ,2X̂LS  (2)X̂

 

-0.2 -0.5 -0.3 0.6 -0.5 0.1 -0.4 0.3 0.0 -1.3 -0.3 -1.1 

-0.4 -2.0 -0.1 -0.1 0.2 0.5 -0.2 -0.4 0.0 -0.2 -0.1 0.9 

-0.4 -0.4 -0.9 0.2 0.1 -0.3 0.2 -0.3 -0.2 -0.2 -0.3 -0.4 

-0.1 -0.3 -50.5 -50.1 0.4 0.5 -49.9 -49.6 -0.1 -0.4 -50.0 -50.1 

-0.5 -1.4 -50.1 -50.2 -0.6 -0.4 -100.1 -99.8 -0.5 -0.8 -200.3 -200.2 

(1) 0.070 =
 

(1),5 0.272 =
 

(2) 0.070 =
 

(2),5 0.268 =
 

(1) 0.080 =
 

(1),5 0.281 =
 

(2) 0.080 =
 

(2),5 0.288 =
 

(1) 0.103 =
 

(1),5 0.314 =
 

(2) 0.105 =
 

(2),5 0.312 =
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Table 3. MC estimates of the point heights and SRs for disturbed observation sets 

Variant A: correct order Variant B: 2 1

16 16h h=  Variant C: 2 1

15 15h h= , 2 1

16 16h h=  

,1X̂LS  (1)X̂  ,2X̂LS  (2)X̂  ,1X̂LS  (1)X̂  ,2X̂LS  (2)X̂  ,1X̂LS  (1)X̂  ,2X̂LS  (2)X̂  

0.0 2.2 0.3 -1.1 0.4 -1.5 -6.8 0.3 -0.8 0.4 -4.5 -5.2 

0.4 -0.1 1.1 0.4 -0.5 -1.5 2.1 1.8 -0.2 -0.8 -5.3 -7.7 

0.6 0.8 0.3 -1.5 -0.6 -3.6 3.4 1.6 -0.1 -1.0 4.9 7.4 

-0.7 -0.9 0.0 1.0 0.3 -1.4 2.0 2.4 -1.3 -0.6 5.2 7.1 

-0.2 0.5 -49.8 -50.3 0.4 -1.5 -36.2 -46.5 -2.0 -1.0 25.3 -42.6 

(1) 0.018 =

(1),5 0.172 =  

(2) 0.019 =

(2),5 0.210 =  

(1) 0.127 =

(1),5 0.321 =  

(2) 0.875 =

(2),5 0.986 =  

(1) 0.263 =

(1),5 0.474 =  

(2) 0.887 =

(2),5 0.998 =  

but not from gross errors. The  natural  feature of Msplit 

estimation is automatic assignment of each observation 
to the proper epoch.  Thus, we can suppose that this 
estimation method will not break down if such outliers 
occur. To illustrate such a feature of Msplit estimation we 

now simulate that point 5P  is displaced and that 

5(1,2) 50H = −  mm. Now, let us consider the following 

variants of the observation sets: Variant A - both 
observation sets are correct (all observations are 
assigned to their epochs properly), Variant B – the 

observation 16h  at the second epoch is equal to 16h  at 

the first one, namely 
2 1

16 16h h= , Variant C where  

2 1

16 16h h=  but also 
2 1

15 15h h= . Thus, in Variant B and C we 

simulate that some observations which are assigned to 
the second measurement epoch should be rather 
related to the first one. The results which are obtained 
for all Variants are presented in Table 3. In the case of 
Variant A, the results are very close to the respective 
results presented in Table 1. If the observation sets are 
not ordered correctly, then the local SRs at the second 
epoch are close to 1, which means that almost always 

the height of the point 5P  at the second measurement 

epoch is better assessed by Msplit estimation than by LS 
estimation. Also, the global SRs are very high at the 
second epoch, hence one can say that the heights of all 
network points are better estimated by application of 
Msplit estimation.  
 

IV. CONCLUSIONS 

The paper shows that Msplit estimation can be 
successfully applied in deformation analysis. The results 
are generally similar to the results of more conventional 
LS estimation; however, the latter method usually 
yields little bit better outcomes. The elementary tests 
show that the efficacy of Msplit estimation grows with 
increasing shift between the observation sets. In the 
case of geodetic networks, where a parameter vector 
usually consists of several point coordinates, the shift of 
one or two such coordinates between measurement 
epochs does not influence the efficacy of Msplit 

estimation in a significant way. The real advantage of 
Msplit estimation is revealed for disordered observation 
sets, for example, when the observations from at least 
two measurement epochs are mixed for some reason. 
Note, that LS estimates break down in such a case in 
contrast to Msplit estimation, for which the ordering of 
all observations within the combined observation set 
can be arbitrary and does not influence the final results 
of the method as well as its iterative process. Such a 
feature results directly from the theoretical 
foundations of the method which are based on the 
concept of the split potential. In short, each observation 
“chooses” the functional model which fits it best. In 
such a context, Msplit estimates are robust against some 
kind of “outliers”, namely observations which come 
from other observation sets. Referring to the presented 
example, there are four height differences which regard 

the height of the network point 5P . If one of them does 

not fit the other, then the method tries to fit such an 
“outlying” observation into another epoch. If it works, 
then the whole estimation process succeeds. However, 
if such an observation is in fact affected by a gross error, 
then it does not fit any epoch, and the estimation must 
break down. The introduction of a virtual epoch, which 
is not related to any real measurements, would be a 
solution of such a problem. One can say that such an 
epoch can collect all “loners” which do not fit any real 
measurement epochs. That concept, which is by the 
way of out of the scope of this paper, was discussed in 
(Wiśniewski and Zienkiewicz, 2016; Zienkiewicz, 2014, 
2018).  
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