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ABSTRACT 

Bridges are critical to economic and social development of a country. In order to ensure the safe 
operation of bridges, it is of great significance to accurately predict displacement of monitoring points 
from bridge Structural Health System (SHM). In the paper, a CEEMDAN-KELM model [complete 
ensemble empirical mode decomposition with adoptive noise (CEEMDAN) based kernel extreme 
learning machine (KELM) ensemble learning strategy] is proposed to improve the accuracy of 
displacement deformation prediction of bridge. Firstly, the original displacement deformation 
monitoring time series of bridge is accurately and effectively decomposed into multiple components 
named intrinsic mode functions (IMFs) and one residual component using CEEMDAN. Then, these 
components are forecasted by establishing appropriate KELM prediction models, respectively. At last, 
the prediction results of all components including residual component are summed as the final 
prediction results. A case study using global navigation satellite system (GNSS) monitoring data is used 
to illustrate the feasibility and validity of the proposed model. Practical results show that prediction 
accuracy using CEEMDAN-KELM model is superior to BP neural network model, EMD-ELM model 
[mode decomposition (EMD) based extreme learning machine (ELM) ensemble learning strategy] and 
EMD-KELM model in terms of the same monitoring data. 

 
 

I. INTRODUCTION 

Bridges are often among the key transportation 
infrastructure assets of a country, stimulating regional 
cooperation and economic and social development. 
With the continuous development of sensing 
technology and information science, health monitoring 
systems are widely used in the safety guarantee of the 
bridge structure (Yu et al., 2019). As an important 
monitoring index that reflects the overall stiffness of 
the structure, displacement deformation is the macro 
response of the bridge micro complex mechanical 
mechanism, which contains the internal mechanical 
evolution information of the structure and affect the 
safety of bridge structure significantly (Xin et al., 2018). 
Therefore, accurate prediction of displacement 
deformation of the bridges is of great scientific 
significance and application value in finding hidden 
dangers and ensuring the safety of the bridges. 

In recent years, a number of methods have been tried 
in the problem of displacement forecasting of the 
bridge, such as linear models, for example, 
autoregressive moving average model (ARMA) (Cao et 
al., 2014) and autoregressive integral moving average 
model (ARIMA) (Cheng et al., 2017); such as nonlinear 

models, for example, artificial neural networks (ANN) 
(Yang et al., 2013; Kao et al., 2017) and support vector 
machine (SVM) (Zhou et al., 2011). Relevant studies 
have shown that that the monitoring data of large 
structures has nonlinear and non-stationary 
characteristics because of the ambiguous service 
environment. The linear models are only capable of 
stationary linear time series prediction, which are hard 
to express in terms of deformation time series with high 
nonlinear and non-stationary characteristics. The 
prediction accuracy of the linear models is relatively 
low. 

In particular, ANN has become one of the frequent 
modeling approaches among these techniques, 
because of the characteristics of adaptability and they 
can approximate any continuous nonlinear function 
with arbitrary precision. However, most ANN-based 
deformation forecasting methods used gradient-based 
learning algorithms such as back-propagation neural 
network (BPNN), which are relatively slow in learning 
speed and may easily get into local minima points. For 
SVM model, its key parameters are difficult to be 
reasonably selected. In recent years, a new learning 
method for single-hidden-layer feedforward neural
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network (SLFN) called extreme learning machine (ELM) 
has been proposed (Huang et al., 2006). ELM can avoid 
many difficulties faced by gradient-based learning 
methods such as stopping criteria, learning rate, 
learning epochs and local minimum.  In addition, 
compared with BPNN, ELM has faster learning speed. 
However, one drawback of ELM is that the randomly 
assigned weights can produce a large variation in the 
prediction accuracy in different trials. In order to solve 
this problem, Huang et al. (2012) further proposed the 
kernel ELM (KELM), which requires no randomness in 
assigning connection weights between input and 
hidden layers. KELM has been successfully applied in 
many fields such as exchange rate forecasting (Wei et 
al., 2018), financial stress prediction (Luo et al., 2018), 
fault diagnosis (Jiang et al., 2014), and so on. 

Inspired by the idea of ‘‘decomposition and 
ensemble’’ (Yu et al., 2008; Lian et al., 2013), the initial 
time series can be decomposed into several sub-series.  
Each sub-series can be predicted separately, and the 
final predicted result can be obtained by summing the 
predictive value of each sub-series. Considering the 
displacement deformation monitoring time series of 
the bridges is unsystematic and nonlinear, the complete 
ensemble empirical mode decomposition with adaptive 
noise (CEENDAN), which is introduced by Torres et al. 
(2011), is used to decompose displacement 
deformation series of the bridge. In the paper, a 
CEEMDAN-KELM model is proposed for bridge 
displacement prediction. The first step is to decompose 
the displacement deformation series into several sub-
series with CEEMDAN method. The second step is to 
choose appropriate KELM model for each decomposed 
sub-series’s prediction. Finally, the final predicted value 
is obtained by summing the each component prediction 
result. Through the prediction analysis for the GNSS 
displacement monitoring data from structural health 
monitoring system of actual bridge, the results show 
that the model proposed in this paper can achieve high 
prediction accuracy and validate the feasibility of this 
model effectively. 

 

II. CEEMDAN METHOD 

Empirical mode decomposition (EMD) is an adaptive 
and efficient time series decomposition method applied 
to decompose nonlinear and non-stationary signals 
(Huang et al., 1998). Using EMD, any complex time 
series can decompose the signal into a small number of 
intrinsic mode function (IMF) components and a 
residual component which contains the trend of the 
original data series. 

However, there are also some shortcomings in EMD, 
and one of the most important problem is the mode 
mixing, which means either some signals consisting of 
disparate scales exist in the same IMF or the signals with 
the same scale exist in different IMFs. To overcome the 
problem, Wu et al. (2009) presented an ensemble 
empirical mode decomposition (EEMD) method with 

the aid of noise-aided analysis. EEMD performs the 
EMD over an ensemble of the signal plus Gaussian 
white noise. The addition of white Gaussian noise solves 
the mode mixing problem by populating the whole 
time-frequency space to take advantage of the dyadic 
filter bank behavior of the EMD. However, EEMD also 
introduces new difficulties. That is, the reconstructed 
signal includes residual noise and different realizations 
of signal plus noise may produce different number of 
modes. For this reason, a novel method which provides 
an exact reconstruction of the original signal and a 
better separation of the modes, called CEEMDAN is 
proposed. The CEEMDAN algorithm can be described as 
follows: 
1. Adding different white Gaussian noise to the original 

signal ( )x t , generate 0( ) ( ) ( )i ix t x t t = + ; For 

every 1, ,i I= decompose each ( )ix t  by EMD, 

until its first mode and compute 
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4. For 2, ,k K= calculate the kth residue 

                        1( ) ( ) ( )k k kr t r t IMF t−= −                 (4) 

5. Decompose each ( ) ( ( ))i

k k kr t E t +  by EMD and 

define the 1k +  CEEMDAN mode as  
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Where ( )kE  is the operator that produces the kth 

mode obtained by the EMD, 
i  is a realization of the 

zero mean unit variance white noise, k is the noise 

coefficient that allows to select the SNR at each stage. 

6. Go to step 4 for next k . 

 

III.  THE PRINCIPLE OF KERNEL EXTREME LEARNING 

MACHINE 

Compared with SVM, KELM is a more recently 
developed learning technique. It generalizes ELM from 
explicit activation function to implicit mapping function, 
which has been proven to have better generalization in 
many applications. This section gives a brief description 
of KELM. More details can be found in Huang et al. 
(2012). 

ELM was proposed for the SLFN, where the hidden 
layer can be any piecewise continuous computational 
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functions including sigmoid, RBF, trigonometric, ridge 
polynomial and so on. The prediction of ELM is given by 

1

( ) ( ) ( )
L

i i

i

f h
=

= =x x h x              (6) 

Where  1, ,
T

L = is the vector of the output 

weights connecting the hidden layer and the output 

layer, L is the number of the hidden nodes, and 

 1( ) ( ), , ( )Lh h=h x x x  is the output of the hidden 

layer with respect to the sample x . According to 
Bartlett theory (Bartlett et al., 1998), for neural 
networks with a small training error, the smaller the 
norms of the weights, the more likely is the 
generalization performance of the networks. In this 
spirit, ELM minimizes the training error in tandem with 
the norm of the output weights: 

Minimize 
2

−H T  and                                   (7) 

Where H denotes the output matrix of hidden layer 
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and T denotes the expected output matrix 
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The minimal norm least square method was used in 
the original implementation of ELM: 

                       
+Η Τ =                                      (10) 

Where 
+Η is the Moore-Penrose generalized inverse 

of the matrix H . 
It should be noted that when the feature mapping is 

unknown to users (Huang et al., 2012), a kernel matrix 
for ELM can be adopted according to the following 
equation:

: ( ) ( ) ( , )T

ELM KELM i j i jh h K =  =  =HH x x x x  (11) 

Where ( )h x plays the role of mapping the data from 

the input space to the hidden-layer feature space H . 
The orthogonal projection method is adopted to 
calculate the Moore-Penrose generalized inverse of 

matrix, namely, 
1( )T T+ −=H H HH , and a positive 

constant C is added to the diagonal of 
T

HH  . Now 

the output function of ELM can be presented as follows: 

1
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In this specific kernel implementation of ELM, namely 
KELM, we can specify the corresponding kernel for ELM 
model, the hidden layer feature mapping need not to be 
known to users. In this paper, RBF kernel function was 
adopted. Its formula is as follows: 

        
2

( , ) exp( )i iK x x x x= − −             (12) 

The two main parameters presented in KELM with 

RBF kernel are penalty parameter C and kernel 

parameter   . The first parameter, penalty parameter

C , determines the trade-off between the fitting error 

minimization and model complexity. The second 
parameter  of the kernel function, defines the 

nonlinear mapping from the input space to some high-
dimensional feature space. 

 

IV. PROPOSED PREDICTION METHOD BASED ON 

CEEMDAN AND KELM 

A. CEEMDAN decomposition for the displacement 
deformation time series of bridge 

The CEEMDAN method is applied to decompose the 

displacement deformation series { ( ), 1 }X t t N=

adaptively, and several IMF components and a residual 

component can be obtained. ( )X t  can be presented as 

follows: 

             ( ) i j

j

X t IMF Residue= +                (13) 

B. Determination of the structures of forecasting 
model based KELM 

For a real displacement deformation series of bridge, 
we assume that the displacement deformation value 

( )X t at t  time can be predicted by the historical 

displacement value ( 1), ( 2), , ( )X t X t X t m− − − at 

( 1, 2, , )t t t m− − −  time, and then the forecasting 

model can be expressed as: 

( ) [ ( 1), ( 2), , ( )]X t f X t X t X t m= − − −  

(14) 

Where ( )f  is a mapping function and m is an 

embedding dimension. After CEEMDAN decomposition, 
the original displacement series can be decomposed 
into several components, and the prediction model can 
be changed to: 

( ) [ ( 1), , ( )]j j jIMF t f IMF t IMF t m= − −   

(15) 

( ) [ ( 1), , ( )]j j jResidue t f Residue t Residue t m= − −   

(16) 
According to the characteristics of each component 

after decomposition, the corresponding KELM model is 
established separately for prediction. 
C. Calculation of the final predicted value 

The KELM model is used to forecast each IMF 
component and residual component, and the 

prediction results are expressed in terms of ˆ
jIMF  and

ˆ
jResidue . The final displacement deformation 

predicted value can be obtained by reconstructing all 
components. 
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             ˆ ˆ ˆ( ) j j

j

X t IMF Residue= +               (17) 

The flowchart of the proposed method is shown in 
Figure 1. 

 

Bridge Deformation Time Series Data

CEEMDAN Decomposition

Input

IMF1 IMF2
... IMFn

KELM1  Forecast KELM2  Forecast KELMn  Forecast...

∑

Output

Prediction Result

Residue

KELMR  Forecast

 
Figure 1. Flowchart of the proposed CEEMDAN-KELM 

method 

D. Evaluation Index of Prediction Accuracy 

In order to quantitatively evaluate the prediction 
accuracy of the proposed model, two commonly used 
evaluation indexes are selected in this paper: 
1. Root of Mean Square Error (RMSE): 

               
2

1

1 ˆ( )
N

t t

t

RMSE X X
N =

= −               (18) 

2. Mean Absolute Error (MAE): 

1

1 ˆ
N

t t

t

MAE X X
N =

= −                 (19) 

Where 
tX  denotes actual displacement deformation 

of bridge, ˆ
tX  denotes the predicted value of 

displacement deformation. 
 

V. CASE STUDY 

A. Project Background 

The GeoSHM project supported by the European 
Space Agency is a system that uses integrated GNSS and 
Earth Observation technologies for structural health 
monitoring of large bridges – and in its feasibility study 
the consortium used the Forth Road Bridge (FRB) in 
Scotland as its testbed bridge.  (Meng et al., 2018). 

The FRB is the major suspension bridge across the 
Firth of Forth, linking Edinburgh to the Northern part of 
Scotland (Figure 2). When opened in 1964, this 2.5km 
long bridge was the fourth longest suspension bridge in 
the world and the longest outside the United States of 
America. The 1,006m long main span of the FRB is 
suspended from two main cables aerially spun between 

two 150m high main towers and each side span is 408m 
long. 

 

 
Figure 2 the Forth Road Bridge (Scotland, UK). 

 

Figure 3 describes the current status of the GeoSHM 
sensor system installed on the FRB. Three pairs of Leica 
GNSS receivers are installed along the main span; one is 
at the mid span while the other two are at the 
navigation points. There are two other Leica GNSS 
receivers located at the top of the North-East and 
South-West tower legs to monitor deformation of the 
main tower. In addition, the wind measurement is 
facilitated by using three WindMaster 3D sonic 
anemometers placed at the mid span and at the top of 
the two main towers. Other environmental conditions 
are determined by the Meteorology station installed at 
the mid span. 

 
Figure 3 GeoSHM sensor system on the FRB 

 

B. Displacement deformation dataset from GeoSHM 

The displacement deformation data of GeoSHM 
system are measured by GNSS and transferred to the 
main GeoSHM server located at the University of 
Nottingham for processing and storage. The sampling 
rate of GNSS receiver is set to 10Hz. According to 
Ogundipe et al. (2014), the influence of high frequency 
error is usually eliminated by calculating average 
deformation in time interval. For this reason, the 
displacement deformation data of GNSS after 10 
minutes average are used to predict and analyse.  Here, 
the 2-day lateral (along the y axis) displacement 
deformation data at the mid span are considered, as 
shown in Figure 4. 
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Figure 4 Deformation time series 

 

C. Forecasting results and performance evaluation 

The original time series is firstly decomposed into 
several IMFs and one residue using CEEMDAN method. 
The amplitude of adding noise is set to 0.2, the number 
of ensemble is 50. The decomposition results with 
CEEMDAN can be seen in Figure 5. 

 
Figure 5 CEEMDAN decomposition 

According to the characteristics of the variation of 
different components, different model parameters 
need to be set when using the KELM model for 
forecasting. It can be seen from equation (13) that 
when different embedding dimensions are used, that is, 
when the number of model inputs is different, the 
number of samples constructed for the deformation 
series is also different. To this end, this paper unified 
the deformation of the last 10 hours as the forecast 
object for the construction of the sample set.  

The embedding dimension corresponding to IMF1 is 
set to 6; the embedding dimension corresponding to 
IMF2, IMF3, and IMF4 is set to 5; the embedding 
dimension corresponding to IMF5, IMF6, IMF7 and 
residue is set to 4. The KELM parameters corresponding 
to each component are determined by grid search 
strategy (Zhao et al., 2017). The forecasting results for 
IMFs and residue are shown in Figure 6. 

  

  

  

 
Figure 6 Comparison of predicted value and actual value of 

each component 

As shown in figure 6, the predicted value and actual 
value for each component are very close for every 
calculation. Because this is a corresponding KELM 
model for the deformation characteristics of each 
component. 

The final predicted value is obtained by adding the 
predictive values of IMFs and one residual. In order to 
compare with the model of this paper, BPNN model, 
ELM model, EMD-ELM model and ELM-KELM model are 
established for forecasting analysis. The final prediction 
results of various models are shown in Figure 7. 
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Figure 6 Comparison of final predicted result and actual 

value of five models 

 
The statistical results of the accuracy indexs of 

various models are shown in Table 1. 
Table 1 Comparison of five models for forecasting 

precision index 

Model RMSE(m) MAE(m) 

BPNN 0.0048 0.0040 
ELM 0.0046 0.0038 

EMD-ELM 0.0029 0.0024 
EMD-KELM 0.0027 0.0023 

CEEMDAN-KELM 0.0024 0.0019 

 
As can be seen from Table 1, the forecasting 

performance of the three ensemble model, EMD-ELM, 
EMD-KELM and CEEMDAN-KELM, is better than those 
of the single BPNN model and ELM model. Especially, 
we can see that CEEMDAN-KELM model has better 
forecasting result than the other four models in terms 
of getting the smallest RMSE and MAE.  

 

VI. CONCLUSION 

This paper makes full use of the adaptive 
decomposition characteristics of CEEMDAN and the 
excellent generalization ability of KELM, and proposes a 
bridge deformation combined prediction model based 
on CEEMDAN and KELM. Based on actual GNSS 
deformation monitoring data from the GeoSHM 
system, it can be found that the proposed CEEMDAN-
KELM model has the better forecasting performance. 
This study provides a new solution for bridge 
deformation prediction. 
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