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ABSTRACT

Areal-based deformation monitoring based on point clouds can be a very valuable alternative to the estab-
lished point-based monitoring. However, due to naively establishing the pointwise correspondences, established
deformation analysis approaches for point clouds do not expose the true 3D changes in parts, which actually did
change. Herein we extend the recently proposed algorithms that establish pointwise correspondences in the
feature space, with a neural network based outlier detection algorithm capable of classifying the putative
pointwise correspondences into inliers and outliers based on information only extracted from the point clouds.
We demonstrate the proposed approach on two data sets, including a real case data set of a landslide located in
the Swiss Alps. We show that while the traditional approaches greatly underestimate the magnitude of the dis-
placements, our approach can correctly estimate the true 3D displacement vectors.

I.  INTRODUCTION

Despite the increasing use of point clouds to detect
and quantify displacement and deformation of man-
made and natural structures, several challenges re-
garding the point cloud based deformation analysis
remain unsolved (Holst and Kuhlmann, 2016). In par-
ticular, this includes the estimation of 3D displacement
vector fields, parameterization of deformations and
quantification of error probabilities like false alarm
rate or probability of missed detection. These chal-
lenges are particular demanding for point cloud data
of natural environments, because in two epochs, iden-
tical points are either not acquired or cannot be readi-
ly identified. Due to the lack of regular structures and
smooth objects, which could be represented with
geometric primitives or free-form shapes, the defor-
mation analysis of natural scenes is predominantly
based on point cloud and surface based deformation
models (Neuner et al. 2016, Wunderlich et al. 2016).

The point based deformation models, traditionally
represented by the cloud-to-cloud (C2C) and mul-
tiscale model-to-model cloud (M3C2) (Lague et
al. 2013) methods, can be used to compare the point
clouds directly. On the other hand, surface based
models such as cloud-to-mesh (C2M) and mesh-to-
mesh (M2M), require that either one (C2M) or both
(M2M) point clouds are first triangulated and then the
resulting meshes are compared. The estimation of the
displacement magnitudes or vectors in the above-
mentioned methods mostly differs in how corre-
spondences among the points are determined. In the
C2C method, the correspondence is established by
selecting the respective nearest point from the other
epoch. Differently, other methods try to incorporate
the local geometric information by constraining the
search for corresponding points in the direction of the

normal vector of either the underlying surface (C2M
and M2M) or a plane fitted to the neighboring points
(M3C2). These naive ways of establishing the corre-
spondences typically result in underestimation of the
displacement magnitude in the parts of the point
clouds that have changed (see Section lll). Further-
more, as noted by Holst et al. (2017) the point cloud
based and surface based models are incapable of cor-
rectly detecting and estimating the in-plane defor-
mations and rigid body motion. A detailed explanation
of point cloud based and surface based deformation
models is available in Holst et al. (2017).

Deformation analysis based on point cloud data is
not the only application that requires establishing the
corresponding points in two or more epochs. In fact,
the correspondences determined using local feature
descriptors are regularly used, e.g. to estimate the
coarse registration parameters. Additionally, Wagner
et al. (2017) and Gojcic et al. (2018) already proposed
the use of local feature descriptors for establishing
correspondences with the goal of deformation analy-
sis. However, Wagner et al. (2017) require RGB data
together with the point clouds, and actually establish
the correspondences in the RGB-D space. Further-
more, both have only tested their approaches on toy
examples, which do not represent a real use case.

Herein, we make a step further and propose an algo-
rithm that takes a set of putative correspondences,
established using a local feature descriptor as input
and performs a classification into inlier and outlier
correspondences. This classification is then used to
establish a robustly estimated displacement vector
field, which denotes a 3D vector field of displacements
for points, for which reliable correspondences were
established. Finally, we show on two different data
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Figure 1: Proposed pipeline for robust estimation of a dense displacement vector field from point cloud data. In the first step,
feature descriptors for each point in both point clouds are computed using 3DSmoothNet and are used to establish the puta-
tive set of correspondences. Independently, the reference epoch is segmented into supervoxels. The correspondences are
then grouped according to the supervoxels and filtered using the proposed outlier detection algorithm. The output of the
pipeline is a robustly estimated displacement vector field. Points are colored based on the displacement magnitude (green
stable, red moved) but the algorithm outputs the real 3D displacement vectors.

sets that the proposed pipeline, which relies solely on
the geometric information intrinsically available in
point clouds, is able to correctly estimate the real 3D
displacement vectors, even for a real use case point
clouds of a landslide in the Swiss Alps.

Il. METHOD

This section describes the proposed pipeline for esti-
mating a dense displacement vector field using point
cloud data. The pipeline combines a local feature de-
scriptor (3DSmoothNet), with a supervoxel segmenta-
tion algorithm and a novel neural network based outli-
er detection algorithm, with the goal of establishing
true correspondences between points of two or more
epochs (Figure 1).

A. 3DSmoothNet — 3D local feature descriptor

We have recently proposed 3DSmoothNet, a deep
learning based 3D local feature descriptor, which has
low output dimension, high descriptiveness, and is
fully rotation invariant. With 3DSmoothNet, we com-
bine the traditional components of handcrafted de-
scriptors, such as the estimation of the local reference
frame for achieving rotation invariance, with the novel
smoothed density value voxelization that is amenable
to fully convolutional layers of standard deep learning
libraries. 3DSmoothNet is a non-linear, learned func-
tion that maps the input, i.e. voxelized spherical
neighborhood of the point, to a low dimensional fea-
ture vector for each point, by solely exploiting the local
geometrical properties of the data.

Machine learning and especially deep learning algo-
rithms typically need a large amount of annotated
data. Specifically, to train 3DSmoothNet a large data
set, consisting of overlapping point clouds with ground
truth correspondences was required. Gathering train-
ing data of outdoor scenes including the ground truth
correspondences for a typical geomonitoring scenario
would have been unfeasible. Therefore, we resorted to

an indoor benchmark data set denoted as 3DMatch
(Zeng et al., 2017), which is an RGB-D data set consist-
ing of 62 real-world indoor scenes ranging from offices
and hotel rooms to tabletops and restrooms. In Gojcic
et al. (2019b) we show that the 3DSmoothNet trained
only using these indoor RGB-D data can generalize to
outdoor point clouds acquired using a laser scanner,
without any fine-tuning.

As 3DSmoothNet significantly outperforms the state-
of-the-art on indoor as well as outdoor data (Gojcic et
al., 2019b), we use it hereinafter to infer pointwise
local descriptors. A more detailed description of
3DSmoothNet is beyond the scope of this paper and
the interested reader is referred to Gojcic et al.,
(2019b) for more information.

B. ANN based outlier detection algorithm

In order to obtain a dense displacement vector field,
we do not compute feature descriptors only for some
selected points, i.e. keypoints, but rather for each
point in the point clouds of both epochs. Under the
assumption that for each point from the reference
epoch, there is a corresponding point in the test epoch
and that correspondence is properly measured by the
closeness in the feature space, the displacement vec-
tor field can be established by a nearest neighbor
search. However, due to the sampling process yielding
the point clouds, 6-DOF motion and occlusions, this
assumption does not (always) hold. In particular, we
also expect that some parts of the area may be de-
formed too much and may not be recognizable any-
more. This, in conjunction with the false correspond-
ences due to repeating structures, changes in point
cloud density and noise of the point clouds, results in
an initial set of correspondences, which is very noisy
and typically contains outliers.

We therefore propose a binary classification algo-
rithm to identify the putative correspondences as
inliers or outliers. The algorithm is based on the local
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Figure 2: The proposed ANN based filtering algorithm is
composed of several MLPs operating on individual
correspondences and symmetric functions aggregating local
information across the whole input. The parameters of MLPs
are shared for all correspondences. In the inference phase,
the branches are simply copied to fit the number of points in
the input
consistency assumption, i.e. locally the point clouds
are assumed to represent a rigid body rather than
being significantly deformed. This assumption is also
crucial for the good performance of the local feature
descriptors. More formally, consider two point clouds
PcR™ and QeR"™, representing the test and ref-
erence epoch respectively. Let (P), =p, =[x,,y,,2,] and
(Q), =q,=[x/,y;,z]] represent the coordinate vectors

of individual points of the point cloud. If each point of
the point cloud P is matched to its nearest neighbor in
the point cloud Q based on the descriptor distance, a

group of N correspondences c, is obtained and can be
written in matrix form as

X=[c;--+¢,],

c =[x,y.,z,x.,y,2],
The matrix X e R™®, containing only coordinates of the

putative correspondences, represents the input to the
filtering algorithm f,, which maps X to a vector of

(1)

weights

w=[w,,,w,] (2)
where w, €[0,1], with w, =0 indicating (strongly)
that the correspondence ¢, is an outlier and w, =1
that it is an inlier. We approximate f, using an artificial

neural network (ANN). Because of the unordered na-
ture of point clouds, the order of the correspondences
is arbitrary and permuting the rows of X should result
in the equivalent permutation of the weights
w = f (X) . To achieve the invariance to input permuta-

tion the network architecture, adapted from Yi et al.
(2018), is a composition of Multi-Layer Perceptrons
(MLPs), which operate independently on each individ-
ual correspondence. Because of this, the individual
branches of the network do not obtain the information
about the neighboring points explicitly and the local
context is implicitly established using suitable symmet-
ric functions, e.g. mean value and standard deviation,
connecting the individual layers of the network (see
Figure 2).

Loss function In order to optimize the parameters of
the ANN, we minimize the hybrid loss function

COXN=SalLO0X)+fLOX)  B)

where £ is the classification loss and £, is the trans-
formation loss. & denotes the parameters of the net-
work and X, represents a set of putative correspond-
ences for point cloud pair k in a mini-batch with B*
training examples. The contribution of both loss func-
tions is controlled using the hyper-parameters « and
B.

The classification loss penalizes both types of error,
the false positives as well as false negatives. Given N
putative correspondences ¢, with the corresponding
ground truth labels y, it is defined as a binary cross
entropy function

L= -y loglhlX,)) -1y, log1—h(X,) ), (4)
i=1

where h is a sigmoid function
hX, )=
1+exp(—f£,(X,))
Minimizing the classification loss proves robust but can
still let some outliers undetected (Yi et al. 2018).
Therefore, additional supervision—supported by the
rigid body assumption—is introduced by penalizing the
deviations from the ground truth rotation matrix R as
L, =||R - g(X,w) (6)
where g is a function, which estimates the rotation
matrix based on the singular value decomposition of

(5)

£

the weighted covariance matrix Z, =X]WX,, with
X, =(X,).ev, X, =(X,).., and W =diag(w) (Sorkine-

1<j<3 45j<6

Hornung et al. 2017). ||o|

| is the Frobenius norm.

Optimization We optimize the parameters of the net-
work using a variant of gradient descent (Kingma and
Ba, 2015) in combination with the same benchmark
data set that is used for the training of 3DSmoothNet,
i.e. the 3DMatch data set (Zeng et al., 2017). We have
empirically discovered that adding the transformation
loss from the start can actually harm the convergence.
Therefore, we start training by setting =1 and
B =0.In a later stage of training, when the network

can already correctly classify the majority of the corre-
spondences we change S to 0.1, which enables

additional improvement of the performance.

C. Oversegmentation using the supervoxel approach

In typical geomonitoring applications, parts of the
repeatedly scanned scene may be stable over time,

1 Herein, a point cloud pair kis represented by all correspondenc-
es belonging to a single supervoxel, and a mini-batch denotes a
group of supervoxels that fit into the memory of a GPU.
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while others change due to the flow of earth and de-
bris. Individual objects may be large enough to be
detected as translated and rotated rigid bodies (Gojcic
et al. 2018). This causes discontinuities in the ground-
truth displacement vector field. In order not to violate
the local consistency assumption, the point clouds can
therefore not be analyzed as one object, but rather
have to be segmented into parts that do not cross the
discontinuities. The discontinuities of the displacement
vector field are not know beforehand, but they pre-
dominantly appear at the boundaries of larger objects.
We therefore use a segmentation algorithm with
boundary preservation (Lin et al. 2018) to segment the
point cloud of the reference epoch into segments,
denoted as supervoxels. The segments are deliberately
allowed to be smaller than the expected actual ob-
jects. This oversegmentation is preferred to object
segmentation because it allows the apparent geomet-
rical changes within an object to be larger than the
changes between objects. With supervoxels, only
small, similar segments are clustered together thus
enabling better boundary preservation. The super-
voxels are obtained by minimizing the energy function
N N
E@2)=).>"z,-dl,.p,)+A/C@)-n, (7)
=1 j=1

where z, €{0,1} with z, =1 if the point p, is a rep-

resentative point of a supervoxel and p, belongs to the

same supervoxel. A is the weighting factor, and C(2)
is a function that counts the current number of super-
voxels. The boundary preservation is achieved by in-
corporating the cosine similarity along with the tradi-
tional Euclidean distance in the similarity measure

||p’ —P 2 (8)

dp,,p,)=1- +0.4

n, N, r

where n, and n_ are the normal vectors of the points
i j

p, and p, respectively and r denotes the approxi-

mate size of the supervoxels in terms of a radius,
which indirectly sets the approximate number of seg-
ments n_.

Herein, the oversegmentation is performed only for
the reference epoch and after the putative corre-
spondences have been determined using the whole
point clouds. Following the segmentation, each super-
voxel is fed to the ANN based filtering algorithm as an
individual example, thus satisfying the local consisten-
cy assumption. Finally, the putative correspondences
are filtered by rejecting all the correspondences with
w, strictly smaller than the classification threshold

7. =0.5 and the remaining correspondences are con-
catenated to form a single point cloud?. Such a robust-

2 Empirically, for more than 95% of the putative correspondences,

the w <0.1or w > 0.9 in the rockfall simulator example. There-

0.5m

w90

Figure 3: Rockfall simulator (left) and a point cloud acquired

using a Leica MS50 (right). Red color shows the moving part

and the blue color the stable part of the simulator. Holes in

the red part of the point cloud show the location of the four
mini prisms.

ly estimated dense displacement vector field can be
used as the final output or as an input to an additional
smoothing/interpolation algorithm such as the one
given in Gojcic et al. (2019a).

[Il. EXPERIMENTS

In this section, we analyze the performance of the
proposed algorithm based on experiments conducted
with two data sets. We start with a detailed analysis
on a data set of a rockfall simulator, acquired in a con-
trolled environment with per point ground truth, be-
fore evaluating the generalization capacity on a real
case data set of a landslide located in the Alps. As
baseline algorithms, we use the established C2C, C2M
and M3C2 algorithms implemented in the open source
software CloudCompare3.

A. Rockfall simulator

The rockfall simulator (Figure 3) is a piece of hardware
composed by a rigid frame and a part that can rigidly
translate vertically and rotate about a horizontal axis
by computer control. The surfaces have a similar struc-
ture as rocks. The simulator allows mimicking a rockfall
and was originally built for educational purposes. The
moving part of the simulator (see Figure 3 right) is
equipped with four mini prisms that can be used to
establish the ground truth. Herein, we consider a sce-
nario in which the moving part is displaced vertically
by about 3 cm. The rockfall simulator was scanned
from a distance of about five meters in two epochs
using a Leica MS50. The mean resolution of the point
clouds is 3 mm. The ground truth transformation pa-
rameters for the moving part of the simulator were
estimated from high precision polar coordinate meas-
urements to the four mini prisms using the same
MS50.

fore, we do not optimize the classification threshold and use the

threshold of z =0.5 herein, if not explicitly specified differently.

3 https://www.danielgm.net/cc/
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r=0.075m

r=0.10m r=0.15m
Figure 4: Results of the supervoxel segmentation of the
rockfall simulator point clouds in relation to r. When r is
too big the supervoxels cross the object boundaries (see for
example the top right corner of the right figure). Colors of
the supervoxels are selected randomly.

Supervoxel segmentation. The size of the supervoxels,
and indirectly also their approximate number, is con-
trolled with the hyper-parameter r of eq. (8). Accord-
ing to Lin et al (2018), the object boundaries can be
preserved even if the distances between boundaries
are smaller than the selected value of r. We evaluate
the supervoxel segmentation algorithm on the refer-
ence epoch point cloud of the rockfall simulator (Fig-
ure 4).

This data set is challenging for the supervoxel seg-
mentation algorithm because individual parts of the
simulator are almost parallel (stable and moving parts)
and contribute little to the cosine similarity of the
normal vectors in the dissimilarity measure (eq. (8)).
Therefore, the boundaries can only be partially pre-
served, when r gets too big (see Figure 4 right). Based
on this qualitative result, we use r=0.1m for the

rockfall simulator experiments presented herein.

ANN based outlier detection. The results of the pro-
posed ANN based outlier detection algorithm are de-
picted in Figure 5. By directly using the model trained
on the indoor scenes, more than 94% of the points can
be classified correctly as outliers and inliers, while less
than 5% are false negatives and about 1% false posi-
tives. Here, a false negative means that the ground
truth label indicates an inlier i.e., the 3DSmoothNet
correspondence is actually correct, but the algorithm
classifies the correspondence as wrong. Conversely, a
false positive denotes that the 3DSmoothNet corre-
spondence is wrong but the algorithm classifies the
correspondence as correct. The ground truth labels for

FBC FBC + outlier detection

Figure 5: Results of the correspondence search in the feature
space, before (left) and after (right) the outlier filtering with
the proposed ANN based algorithm. Red color denotes the
outlier and the green color the inlier correspondences.
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Figure 6: Confusion matrix. We use the algorithms to classify
the points of the rockfall simulator into two classes: moved
and stable. While the performance of all algorithms for
ground truth class stable is comparable, FBC + outlier
detection algorithm clearly outperforms the baselines for the
ground truth class moved. Results are shown in percentage.

the correspondences were established by considering
the deviations between the putative and the ground
truth corresponding point. If the deviation was less
than 7.5 mm (2.5 times the mean resolution), the
correspondence was labeled as an inlier and otherwise
as an outlier.

Pointwise classification into stable and moved parts.
We start the comparison to the baseline algorithms by
evaluating the capability of the algorithms to classify
the point clouds into moved and stable parts. The
ground truth labels are defined manually and can be
seen in Figure 3 right. For the C2C, C2M and MC32
analysis we compute the displacements using the
implementation available in CloudCompare and infer
the labels based on the magnitude of the displace-
ments. Specifically, all the points for which the esti-
mated displacement is larger than 7.5 mm (2.5 times
the point cloud resolution) are classified as moved and
the rest are classified as stable. We compare this re-
sults to the feature based correspondences (FBC) es-
tablished using 3DSmoothNet, followed by the pro-
posed ANN based outlier detection algorithm. After
the outlier detection, only a subset of points (inliers)
are remaining and can be classified as stable or moved
based on the same threshold as above. To ensure a fair
comparison, we infer the labels for the remaining
points (outliers) based on the majority voting inside
individual supervoxels. The results are depicted in
Figure 6. Whereas all the algorithms achieve high accu-
racy for the ground truth class "stable", the baselines
fail in classifying the moved areas correctly. Indeed,
they classify more than 70% of the moved points as
stable. On the other hand, FBC + outlier detection
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Figure 7: Deviations from the ground truth. For clarity, we
show only the results of the FBC and C2C. C2M and M3C2
deviations also show a multimodal distribution similar to the
one of the C2C.

algorithm achieves more than 98% accuracy for both
classes and its performance is equal for stable and
moving parts.

Quantitative analysis of the displacements. The goal
of the point cloud based deformation analysis is not
only detecting which parts of the scenery have
moved/changed and which have remained stable, but
also the quantification of the displacements. Because
some of the baseline algorithms output only the mag-
nitude of the displacement and not a full 3D displace-
ment vector, we use the residuals between the esti-
mated and the ground truth displacement magnitude
as the performance metric. For the proposed pipeline,
only the correspondences that were classified as inliers
(67.5% of all points) are considered in this analysis.

Figure 7 and Table 1 show the results of the quanti-
tative analysis of the estimated displacements using
the rockfall simulator point cloud data. The residuals
of the FBC + outlier detection algorithm are normally
distributed with the mean value of 0 mm and a stand-
ard deviation of 3 mm. On the other hand, the residu-
als of C2C show a multimodal distribution with one
peak centered at O mm and one at approximately
3 cm, which corresponds to the actual displacement of
the moving part, indicating that this displacement is
not detected by the C2C analysis. Table 1 summarizes
the results for all the methods, where the precision
denotes the ratio between the number of correct
correspondences (i.e. the residuals smaller than
7.5 mm) and the number of all correspondences. Simi-
larly, recall denotes the ratio between the number of
correct correspondences and the number of all points
in the reference epoch.

For most of the methods the precision and recall are
the same, because the correspondences established by
them are correct only within the stable areas (because
of the dominant in-surface component of the actual
changes), and the percentage of these within the en-
tire scene is about 26%. In fact, as also indicated by the
results printed in Figure 6, the majority of the scenery
is identified as stable using these standard algorithms,
irrespective of the ground truth motion.

Our method instead performs equally well in stable
and non-stable areas and achieves a much higher pre-
cision and recall, indicating that more than 98% of the
identified correspondences are correct. However, this
is only possible because our approach rejects putative
correspondences identified as outliers. Therefore, the
recall cannot achieve 100% but rather indicates the
percentage of the point cloud with sufficiently unique
features.

Because our method outputs real 3D displacement
vectors, we also include the analysis based on the
distances between the estimated and the ground truth
displacement vectors. Table 1 shows that not only our
method reaches a significantly higher precision and
recall, the small drop in performance between "Ours"
and "Ours (vector distance)" highlights that it can also
efficiently estimate the real 3D displacement vectors.

Table 1: Precision and recall of the estimated displacements
in comparison to the ground truth, for the rockfall simulator
point clouds.

Precision Recall
[%] [%]
Cc2Cc 26.2 26.1
c2M 25.8 25.8
M3C2 26.5 25.8
Ours 98.8 66.4
Ours (vector distance) 98.4 66.1

B. Real case landslide in the Alps

The second data set used for demonstration herein
consists of point clouds of a real landslide located in
the Swiss Alps (Figure 8). The point clouds were ac-
quired using a drone based LiDAR system (Riegl
RiCOPTER) in two epochs about 2.5 months apart (July
and September 2018). The point clouds of both epochs
were georeferenced and the registration is hereinafter
considered as error free. Based on the GPS and total
station measurements, which are available for select-
ed points on the edges of the landslide, displacements
in the range of a couple of centimeters (bottom part)
to a couple of decimeters (top part) were expected.
Due to the large amount of data—the reference epoch
has more than one billion points—we focus on two
selected areas for which also a ground truth is availa-
ble through the high precision total station measure-
ments (Area 1/blue and Area2/red of Figure 8). Each of
these areas contains approximately one million points
per epoch.

Quantitative analysis of the displacements. We follow
the same evaluation procedure as in the rockfall simu-
lator case. Specifically, we compare our method to
C2C, C2M and M3C2. Additionally we compare the
results to the ground truth, which is available in form
of a displacement magnitude for a single point in the
middle of Area 1 and a single point in the vicinity of
Area 2. As we analyze relatively small areas, we as-
sume that the displacement magnitude of these
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ground truth points is representative for all the points
within the respective area. For the supervoxel segmen-
tation we use r =1.5m for Area 1 and r =2 m for Area

2, which is approximately 30 times the resolution of
the point clouds in the respective area and corre-
sponds to the ratio used in the analysis of the rockfall
simulator.

The results are depicted in Figure 9 and summarized
in Table 2. When compared to the ground truth, tradi-
tional methods significantly underestimate the magni-
tude of the displacements. Even more, Table 2 shows
that the estimated magnitude is rather dependent on
the resolution of the point clouds, roughness of the
surface and possibly the direction and type of the
motion than on the actual displacement. On the other
hand, our method can accurately estimate the dis-
placement magnitudes with an error smaller than
(Area 1) or close to (Area 2) 5% of the actual motion.
This error corresponds to less than half of the mean
resolution of the point clouds.

Outlier detection analysis. The lower resolution and
higher noise of the point clouds, combined with the
larger motion, presumably have a negative effect on
the correspondence search and on the outlier detec-
tion algorithm. This results in a long tail of the distribu-
tion of the displacement magnitudes, especially for
Area 2, which is to a large extent covered with small
gravel with no distinct features. We therefore perform
an additional analysis in which we assume that the
ground truth displacement magnitude ||d,,|=0.414 m

is representative for all the points in the Area 2. As-
suming that the standard deviation of the estimated
displacement magnitudes is approximately 0y ~0.1m

for all the methods in Table 2, we label all correspond-
ences ¢, for which

ldg: || ~3a, < ”d ” <[de]+30,

as correct and the rest as wrong.

Considering these labels, 65% of the correspondenc-
es established using 3DSmoothNet without outlier
detection are wrong for Area 2. After the outlier de-

=1000m
Figure 8: Reference point cloud of the landslide located in
the Swiss Alps acquired using a drone based LiDAR system.
We perform the deformation analysis for the areas marked
with the red (Area 1) and blue (Area 2) color.
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Figure 9: Histogram of the displacement magnitudes for Area
1 (left) and Area 2 (right). Traditional methods greatly un-
derestimate the magnitude of the displacements.

tection with the approach proposed herein (using
7.=0.5), more than 81% of the inliers are actually
correct correspondences and less than 19% are wrong,
with a recall of 33%. As shown in Figure 10 left, most
of the false positives left after the outlier detection lie
in the areas covered with gravel (left and right sides of
the ridge).

Due to the relative large number of false positives,
we analyze the effect of increasing 7, to 1, i.e. accept-
ing only the correspondences with very high confi-
dence®. With this, the percentage of correct corre-
spondences can be increased to 98.5% with a recall of
27.7% (Figure 10 right). This result indicates that a
scene specific 7, should be used and the appropriate

choice is a topic for future research.

Table 2: Median displacement magnitude. The results of our
method (7. = 0.5) for Area 2 are slightly biased due to the

long tail of the displacement magnitude distribution.

Method Areal Area 2
Displ. [m] Displ. [m]

c2Cc 0.119 0.118

Cc2M 0.144 0.117

M3C2 0.160 0.113

Ours(z. =0.5) 0.307 0.464

Ours (7. =1) 0.304 0.439

Ground truth 0.306 0.414

V. CONCLUSION

We have proposed a new pipeline for deformation
analysis of natural scenes using point cloud data. We
complement 3DSmoothNet with an outlier detection
algorithm, which classifies the putative correspond-
ences into inliers and outliers. Using two different data
sets, we highlight the shortcomings of the traditional
approaches, while showing that our approach can
correctly estimate real 3D displacement vectors. In the
future work, we will investigate the proper choice of

4 To avoid the quantization errors we use 1-1-10" in our
code.
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7,=0.5

Figure 10: Point cloud of the Area 2 after the outlier detection algorithm using 7. = 0.5 (left) and 7, =1 (right). Blue color

denotes the true positives, red color the false positives and grey color the negatives. Note how the false positives mostly lie on
the flat areas covered by gravel and small cobbles with no distinctive features.

the hyper-parameter for the outlier detection step,
and the classification of the displacement vector field
into rigidly displaced objects and deformed parts.
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