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ABSTRACT 

Msplit estimation is a development of M-estimation which can also be applied in deformation analysis. This 
paper concerns two types of such an estimation: squared Msplit estimation (SMS), which is based on the 
assumption of normality of the observation errors and absolute Msplit estimation (AMS), which is based on 
L1 norm criterion. The main objective of the paper is to assess the accuracy of such estimators in the cases of 
analysis of vertical displacements of network points (or object points). To achieve the main objective of the 
paper we apply the Monte Carlo simulations. Another interesting issue is to compare the accuracy of SMS 
estimation with the accuracy of AMS estimation but also with the accuracy of the traditional least squares 
estimation (LS). Generally, AMS estimates have a better accuracy than SMS estimates. In many cases the 
accuracy of both Msplit estimates is similar to the accuracy of LS estimates. However, if there are some 
nonrandom errors in the observation sets then there are some cases when the accuracy of AMS estimates is 
better than the accuracy of the rest of the estimates considered here. It stems from the fact that AMS estimates 
are robust against disturbances which have a small magnitude. It is also worth noting than the accuracy of both 
Msplit estimates might also depend on the values of the point displacements; however, such an influence might 
be varied for different network points or network shapes themselves. The paper presents some empirical 
analysis in such a context. 

 

 

I. INTRODUCTION 

Msplit estimation is a development of M-estimation. 
That method assumes that an observation set is 
unrecognized mixture of realizations of different 
random variables (Wiśniewski, 2009, 2010). In the case 
of that method, there is a split of the functional model 
and it means that each observation can be a realization 
of either of some different random variables. The 
process of assignment of the observations to the 
particular variable is automatic during iterative 
adjustment (also to the particular variant of the split 
functional model). On the whole, the most common 
variant of Msplit estimators concerns two competitive 
parameters that stems from the split of the functional 
model into two competitive ones, q = 2. Obviously, 
there are also variants for bigger number of competitive 
functional models q, which are called as Msplit(q) 
estimates. Generally, the most popular method so far is 
the squared Msplit estimation which is based on the 
objective function which stems from the assumption of 
normality of the observation errors. The basic 
properties of the squared Msplit estimation has already 
been investigated. Up to now, the squared Msplit 
estimates are applied in, e.g., deformation analyses 
(Duchnowski and Wiśniewski, 2011; Zienkiewicz, 2015; 
Zienkiewicz and Baryła, 2015), robust coordinate 
transformation (Janicka and Rapiński, 2013), 
elaboration of the data sets from the terrestrial laser 

scanning or the systems of Airborne Laser Scanning 
(Błaszczak-Bąk et al., 2015; Janowski and Rapiński, 
2013) and direct identification of gross errors (Li et al., 
2013). In turn, a modification of Msplit estimation, 
namely Shift-Msplit estimation is used in a direct 
estimation of the parameter differences (Duchnowski 
and Wiśniewski, 2012; Wiśniewski and Zienkiewicz, 
2016) and it might be an alternative for some other 
natural robust estimation of such a shift, e.g., the 
Hodges-Lehmann estimation (Duchnowski, 2013; 
Duchnowski and Wiśniewski, 2014, 2017; Hodges and 
Lehmann, 1963; Huber and Ronchetti, 2009). 

The theoretical foundations of Msplit estimation allow 
us to develop the method and design different 
objective functions. The new variants of Msplit 
estimation might have different properties than the 
squared Msplit estimation because of the other type of 
the objective function. One of the possible ways to 
design such an alternative variant of Msplit estimation is 
to base the objective function on the functions of the 
traditional robust methods. Thus, in this paper we 
consider such an alternative variant of Msplit estimation 
which objective function is based on an application of L1 
norm condition (or the least absolute deviations, LAD), 
namely the absolute Msplit estimation (see, Wyszkowska 
and Duchnowski, 2019). From the practical point of 
view, we should know the accuracy of both variants of 
Msplit estimator. Thus, the main objective of the paper is 
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to assess such an accuracy. Since we are especially 
interested in application of the methods in question in 
deformation analysis, thus we assess the estimation 
accuracy in the context of vertical displacement 
analysis. Note, that the theory of how to assess the 
accuracy of Msplit estimators is not derived so far 
(especially with respect to the absolute variant), thus 
we will apply an empirical approach to achieve the 
paper goal. With regard to accuracy, we will use both 
root-mean-square deviation (RMSD) and standard 
deviation (SD). All empirical tests are based on Monte 
Carlo simulations. 

 

II. THEORETICAL FOUNDATIONS 

In the case of Msplit estimation a classical linear model 
of observations: 

 

 + = +=y θ v AX v  (1) 

 
where y = observation vector 

 θ = location parameter vector 
 v = measurement errors vector 
 A = known rectangular matrix 
 X = unknown parameter vector. 
 

is split into q competitive models (Wiśniewski, 2009; 
2010): 

 

 y θ v AX v( ) ( ) ( ) ( )l l l l= + = +  (2) 

 
where =1, ...,l q  and it is the number of the 

competitive model. 
 
It means that the split functional models concern the 
same observation yi. Due to the split of functional 
models we obtain q competitive versions of 
parameters. Thus, one can say that the observation set 
is an unknown mixture of realizations of q random 
variables which differ from each other at least in the 
location parameters. Generally, we do not know how 
particular observation is assigned to a respective 
parameter version. To put it another way, one has no 
information how the observations should be divided 
into q groups. The assumption about number of 
competitive models depends on the analyst’s 
knowledge and experience and/or particular estimation 
problem (Zienkiewicz, 2018).   

Here, we assume that q = 2, so the functional models 
can be written as: 

 

 
= + = +

= + = +

(1) (1) (1) (1)

(2) (2) (2) (2)

y θ v AX v

y θ v AX v
 (3) 

 
Msplit estimation is characterized by the optimization 

problem, which is defined by following formula (more 

information about the general optimization problem 
can be found in Wiśniewski, 2009; 2010): 

 

   
=

= =
(1) (2)
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1
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where ρ = chosen function which defines the 

objective function. 
 

Generally, the Newton method can be applied to find 

the estimates (1) (2)
ˆ ˆ,X X  which minimize that function. 

Additionally, it is worth noting that the properties of the 
method stem from the two following characteristic 
functions (e.g., Wiśniewski, 2009): 
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where  = influence function 
 w = weight function. 
 
The weight function is also very useful in designing 
numerical algorithms leading to the sought estimates. 
In the case of the first considered variant of Msplit 
estimation, namely the squared Msplit estimation 
(SMS estimation), the objective function is as follows 
(Wiśniewski, 2009):  

 

   
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= =  2 2
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Thus, the respective influence functions are defined as: 
  

 
2
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2
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and the respective weight functions as: 
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Here, another considered variant of Msplit estimation 

is the absolute Msplit estimation (AMS estimation) (see, 
Wyszkowska and Duchnowski, 2019), which is 
developed on the basis of the objective function of LAD 
method (e.g., Baselga and García-Asenjo, 2008; 
Marshall and Bethel, 1996): 

 

 
1 1
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4th Joint International Symposium on Deformation Monitoring (JISDM), 15-17 May 2019, Athens, Greece 
 

Considering such a function, one can propose the 
objective function of AMS estimation in the following 
form: 

 X X(1) (2) (1) (2) (1) (2)
1 1

( , ) ( ) ( )
n n

i i i i
i i

v v v v  
= =

= =   (11) 

 
This leads to respectively influence functions: 
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and weight functions: 
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Generally, Msplit estimation is an iterative process 

(Wiśniewski, 2009). In the case of AMS estimation the 
weight functions depend on the both v(1) and v(2), so the 

subsequent parameter estimates (1) (2)
ˆ ˆ,X X  must be 

estimated as ( ) ( )1 1
(1) (2) (1) (2)
ˆ ˆ ˆ ˆ, ,j j j j− − X X X X . SMS estimates 

can also be computed in the same way; however, there 
is also another way given by Wiśniewski (2009) where 

1 1
(1) (2) (1) (2)
ˆ ˆ ˆ ˆj j j j− −  X X X X . Here, we will apply the first 

way only. Usually, the least square estimate (LS), 

namely X̂LS , is also the starting point of the iterative 

processes, hence =0ˆ ˆ
LSX X  (Wiśniewski, 2009; 2010). 

However, in the case of AMS estimation, the starting 

values of (1) (2)
ˆ ˆ,X X cannot be the same because of the 

failure of the start of iterative process. The basic 
solution in such a case is to assume: 
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where:  Δ = assumed positive value. 
 
The iterative process itself can be written as follows (e.g., 
Wiśniewski, 2009; Wyszkowska and Duchnowski, 2019) 
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where  dX = increment to parameter 

 H = Hessian matrix 
 g = gradient 

 
and 
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where  w = respective weight matrix. 
 

The weight matrices ( )w v v1 1
(1) (1) (2),j j− −  and 

( )w v v1 1
(2) (1) (2),j j− −  in the iterative process can be 

computed as: 
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That approach is successfully applied in SMS estimation. 
Notwithstanding this, in the case of AMS estimation, 
there is a possible problem with such an iterative 
process. It concerns singularity resulting from the 
weight functions of Eq. (13) which are not defined for 
measurement errors v(l) equal 0. In the situation when 

v(l) aims for zero, then the weight function ( ) (1) (2)( ),lw v v  

goes up to infinity. Thus, we should use a modified 
weight functions of Eq. (13), namely: 
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where  w* = modification of weight functions 

 d = assumed positive constant. 
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On the whole, the iterative process should be finished 

for such j = k, when ( )1 1
(1) (1) (2), 0k k− − =g X X , 

( )1 1
(2) (1) (2), 0k k− − =g X X  and thereupon 1

(1) (1) (1)
ˆ = k k−=X X X , 

1
(2) (2) (2)

ˆ = k k−=X X X .  

 

III. EMPIRICAL TESTS 

Let us consider an example of deformation analysis 
and simulate a levelling network which consists of two 
reference points P1 and P2 and three object points A, B 
and C (Figure 1). We assume that all observations (eight 
height differences) are measured at two measurement 
epochs, thus q = 2. Note, that we have one combined 
observation vector here (that vector contains 
observations from both epochs). 

Due to the above, one can have two competitive 
models of Eq. (3), where: 
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where  HI = theoretical height at the first 

measurement epoch 
 HII = theoretical height at the second 

measurement epoch. 
 
Hence, there is an opportunity to determine vertical 
point displacement from the following formula: 
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 (21) 

 
where  ΔX = parameter difference 

 ΔH = vertical point displacement. 
 

All empirical analyses are based on Crude Monte Carlo 
method (here denoted as MC) which is a statistical 
sampling approach. The Monte Carlo method is very 
useful tool to solve many problems which might occur 
in geodesy and surveying (e.g., Duchnowski and 
Wiśniewski, 2014; Wyszkowska, 2017; Wyszkowska and 
Duchnowski, 2018, 2019). We assume that 
observations are independent, and their errors are 

normally distributed 2(0, )iv N  , where standard 

deviation of measurement errors 1mm = . Another  

 

 
Figure 1. Simulated levelling network 

 
assumption is that we execute 1000 simulations in all 
empirical tests. That number of simulations seems 
enough for purposes of the present paper. All 
computations were carried out in Mathcad 15.0. Thanks 
to the MC method it is possible to assess the accuracy 
of estimates by computing empirical standard 
deviations and root-mean-square deviations of these 
distributions (e.g., Duchnowski and Wiśniewski, 2014, 
2017; Duchnowski and Wyszkowska, 2017; 
Wyszkowska, 2017): 
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where  SD = empirical standard deviation 

 ˆMC
iX  = estimated value at the ith simulation 

 MCX  = mean value of the parameter from all 
Monte Carlo simulations 

 n = number of simulations 
 RMSD = root-mean-square deviation 
 X = theoretical value of the estimated 

parameter. 
 
Without loss of generality we can assume that  

1 1
0mmI II

P PH H= =  and 
2 2

0mmI II
P PH H= =  at both 

measurement epochs. In other words, the reference 
points are stable. We can also make the next 
assumption that the theoretical heights of the object 

points 0mmI
AH = , 0mmI

BH =  and 0mmI
CH =  at the 

first measurement epoch. Now, let us consider the 
following several variants to investigate the accuracy of 
all estimates considered here. 
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First, let 0mmII
BH = , 0mmII

CH =  and let II
AH  might 

vary within the interval 0mm, 50mm  . Thus, we are 

checking if the accuracy of SMS or AMS estimates 
depend on the magnitude of the vertical point 
displacements. Figure 2 presents RMSDs obtained for 
all estimates. Note, that AMS estimation gives superior 
results than SMS estimation; however, the smallest 
RMSDs, which are close to 1 mm for all point 
displacements, are obtained for LS estimation. There 
are some disturbances for RMSD(ΔHA), when the values 
of ΔHA are quite small. It is probably caused by some 
problems with assigning observations to the 
appropriate measurement epochs when the parameter 
values are close to each other at both measurement 
epochs. We also compute SDs for that case of points 
displacements. Since they are close to the values of 
RMSDs, they are not shown here. 

Now, let us assume that 20mmII
BH = , 50mmII

CH = . 

Figure 3 shows RMSDs for the second case of points 
displacements. The values of RMSD(ΔHB) and 
RMSD(ΔHC) are close to 1 mm for each considered 
method and for all ΔHA. Once again, RMSD(ΔHA) has 
much bigger values for both SMS and AMS estimates for 
relatively small ΔHA (with respect to LS estimate); 
 

 
Figure 2. RMSDs of point displacements for different values 

of ΔHA; where ΔHB = 0 mm, ΔHC = 0 mm 

 

however, RMSD(ΔHA) for all three methods are close to 
each other for bigger ΔHA. Thus, the accuracy of Msplit 
estimates depends on the point displacements. Once 
again, the computed SDs are similar to RMSDs, 
respectively, hence they are not presented here. 

The third and fourth examples considered here 
concern the situation when the observation set from 
the second variant is disturbed by one gross error at the  
second measurement epoch. We assume that the 

height difference  1
IIh   is an outlier, and that it is 

disturbed by either positive or negative gross errors 
equal to 5 mm and -5 mm, respectively. Let us analyze 
the case with positive gross error. Respective RMSDs 
are presented in Figure 4 and SDs in Figure 5. When 
there is the outlier in observation set, the values of 
RMSD(ΔHA) obtained for LS estimation are distant from 
these ones from the previous case. Furthermore, 
RMSDs(ΔHA) for AMS estimation are usually better than 
those for LS and SMS methods. The exceptions are 
results obtained for such ΔHA which are close to ΔHB. 
Then RMSDs(ΔHA) for AMS estimates are significantly 
bigger. That results from the coincidence between ΔHA 
and ΔHB. Note, that if ΔHB   ΔHA then the observed (or 

simulated) 7 7
II Ih h . It might happen that the  

 

 
Figure 3. RMSDs of point displacements for different values 

of ΔHA; where ΔHB = 20 mm, ΔHC = 50 mm 
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Figure 4. RMSDs of point displacements for different values 

of ΔHA; where ΔHB = 20 mm, ΔHC = 50 mm with an 
observation affected by a positive gross error  

 
simulated random error of either of h7 coincides well 

with the outlying observation 1
IIh . Such a h7 would be 

assigned to the second measurement epoch which 

results in too high value of the estimated II
AH  and hence 

too high value of the estimated ΔHA. In such a context, 
the coincidence between ΔHA and ΔHB (or any 
neighboring network points) might be defined as a 
problem of AMS estimation. Despite this, AMS 
estimation seems to be more robust against outlier 
than SMS estimation (RMSDs are generally smaller for 
AMS estimates than for SMS estimates). To compare 
accuracy of both estimates we also compute SDs. 
Obviously, SD(ΔHA) of LS estimate is close to that from 
the previous case, respectively. Also, this time, if ΔHA 
are relatively small then we observe the lower accuracy 
of both Msplit estimates. Moreover, if there is a 
coincidence between ΔHA and ΔHB then SD(ΔHA) for 
AMS estimation is also bigger. Whereas, the values of 
RMSD(ΔHB), RMSD(ΔHC) as well as SD(ΔHB), SD(ΔHC), 
respectively, are rather close to each other for each 
considered method. 

Let us consider the last case with an observation 1
IIh  

affected by a negative gross error. RMSDs of that case 

 
Figure 5. SDs of point displacements for different values 

of ΔHA; where ΔHB = 20 mm, ΔHC = 50 mm with an 
observation affected by a positive gross error 

 
can be seen in Figure 6 and SDs in Figure 7, respectively. 
Note, that all RMSDs of LS estimates are close to these 
in Figure 4. On the whole, the superior results of RMSDs 
are obtained for AMS estimation. In other words, AMS 
estimation is less sensitive to such an outlier than SMS 
estimation and LS estimation are. The accuracy of SMS 
estimation is quite comparable to accuracy of AMS 
estimation for ΔHA ≤ 10 mm (for both RMSDs or SDs). In 
turn, the bigger is ΔHA, the larger is the difference 
between RMSDs(ΔHA) of SMS and AMS estimates. 
Generally, the values of RMSDs(ΔHA) and SDs(ΔHA) of 
AMS estimation are close to each other. Note, that the 
relations between RMSD(ΔHB), SD(ΔHB) and 
RMSD(ΔHC), SD(ΔHC), respectively, are similar to the 
preceding case. Another interesting issue is that all 
values of SDs of that case are comparable to RMSDs 
which were obtained in the second case (no gross error 
case), so the occurrence of the gross error does not 
make SDs worse. It is noteworthy that this time the 
coincidence between ΔHA and ΔHB has no bad influence 
on the accuracy of both Msplit estimates. That is due to 
the general properties of Msplit estimation. Note, that 
the negative gross error of a moderate magnitude will 

place   the   outlier   1
IIh    “between”   two   measurement 
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Figure 6. RMSDs of point displacements for different values 

of ΔHA; where ΔHB = 20 mm, ΔHC = 50 mm with an 
observation affected by a negative gross error 

 
epochs (in contrast to the previous case where the 
positive gross error locates the outlier “outside” the 
epochs). Such a location is usually not a problem 
especially for AMS method which seems robust against 
such outliers (Wyszkowska and Duchnowski, 2019). 
 

IV. CONCLUSIONS 

The paper presents an investigation of the accuracy of 
two variants of Msplit estimates, namely the squared 
Msplit estimates and the absolute Msplit estimates in the 
context of the vertical deformation analysis in 
comparison to the accuracy of the least square 
estimation. On the whole, AMS estimates have a better 
accuracy than SMS estimates. The tests, which consider 
the observation set without outliers, show that the 
accuracy of both Msplit estimates might be similar to the 
accuracy of LS estimates. What is more, such tests 
prove that the accuracy of both Msplit estimates might 
depend on the values of the point displacements; 
however, such an influence might be varied for 
different network points, an observation affected by 
the negative gross error or network shapes themselves. 
There is also noticeable, that the general problem of 
 

 
Figure 7. SDs of point displacements for different values 

of ΔHA; where ΔHB = 20 mm, ΔHC = 50 mm with an 
observation affected by a negative gross error 

 
assessing the accuracy of Msplit estimates is related to 
assignment the observations to particular 
measurement epochs (especially, for such values which 
are close to each other at both measurement epochs). 
Then the accuracy of the estimates in question is lower. 
It increases with the growing difference between the 
parameters. Note, that empirical assessments of 
estimator accuracy (especially RMSD) can provide also 
other useful information. In the context of the paper, 
high values of RMSD mean that the point displacements 
are not estimated correctly by the method under study.   

Whereas the analysis of two empirical tests which 
concern the occurrence of an observation affected by 
gross errors shows that usually AMS estimates are 
superior to the rest of the estimates considered here. It 
stems from the fact that AMS estimates seems more 
robust against disturbances which have a small 
magnitude. However, if the values of vertical 
displacements of two object points are close to each 
other, the accuracy would be distinctly lower. After all, 
it seems that the higher robustness against outliers (in 
most of the cases) makes the method an interesting 
alternative to well-known robust estimations and an 
advisable solution in some problems of surveying and 
geodesy.  
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