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ABSTRACT

The use of the Errors-In-Variables (EIV) model for geodetic applications, along with the corresponding Total Least-

Squares (TLS) adjustment, has been around for over a decade; see Schaffrin and Wieser (2008) who pioneered this

method in geodetic science along with Schaffrin and Felus (2005). But, beyond the successful derivation of nonlinear

formulas for TLS estimates of both the parameters and the variance component, a similarly elegant formula for the

variance-covariance matrix of the estimated parameters is still missing. Moreover, a first attempt for an approximate

representation by Amiri-Simkooei and Jazaeri (2012) had to be dismissed by Schaffrin and Snow (2014) shortly there-

after as being non-satisfactory due to the neglection of various sources of randomerrors in the nonlinear relationship

between the data and the parameter estimates.

Here, we shall try to compensate for some of these neglections, while still relying on a linearized approach, as our

attempts for fully nonlinear error propagation were unsuccessful so far. An example from geodetic network analysis

will illustrate the new, more rigorous formulas.

IÄãÙÊ�ç�ã®ÊÄ

In the following, we present four different models for

handling unknown, fixed parameters with random er-

rors in both dependent and independent data vari-

ables. The first three models are well represented in

the classic geodetic and deformation-monitoring lit-

erature, while the fourth one arrived on the scene

more recently. The models treated in turn are (1)

the nonlinear Gauss-Helmertmodel, (2) the nonlinear

Gauss-Markovmodel, (3) themodel of direct observa-

tions with nonlinear constraints, and (4) the Errors-In-

Variables (EIV) model.

In so far as the models can treat the same un-

known parameters and data variables, and the LEast-

Squares Solutions (LESSs) within the models generate

the same vectors of estimated parameters and pre-

dicted residuals, it can be said that they are equiva-

lent. However, the dispersion (variances-covariance)

matrix for the estimated parameters turns out to be

somewhat different within the EIV model than within

the other three, if the formula that we derived for it

is used.

Onemotivation for presenting all fourmodels is our

view that seeing a problemapproached fromdifferent

angles can, for the attentive reader, serve to deepen

insight into the problem. However, our primary pur-

pose is to contrast the dispersion matrix for the esti-

mated parameters computedwithin the nonlinear EIV

model with the one that is computed from any of the

other three (which are equivalent to each other) after

iterative linearization.

In Section 1, we present the four models, provid-

ing precise definitions of all terms involved. In Sec-

tion 2, we present the least-squares parameter es-

timates within each model, as well as the predicted

residual vectors. In Section 3, a numerical example

involving a 1-D similarity transformation is shown for

illustrative purposes. Finally, some conclusions and an

outlook for future work are given in Section 4.

1. MÊ��½ D�¥®Ä®ã®ÊÄÝ

The function components of four equivalent data

models under consideration are enumerated below.

They all have the same stochastic properties, express-

ed in (1b).

1. The nonlinear Gauss-Helmertmodel is written as

y
n×1

= A
n×m

ξ +
[
In −(ξ⊗ In)

T
]  ey

n×1

eA
nm×1

 ,

(1a)

e =

[
ey
eA

]
∼ (

[
0
0

]
, σ2

0

[
Qy 0
0 QA

]
= σ2

0Q).

(1b)

2. The nonlinear Gauss-Markov model is written as

ΞA
n×m

:= A− EA ⇒ (2a)

⇒


y

n×1
= (ξT ⊗ In) ξA

nm×1
+ ey,

vecA = ξA + eA, ξA = vecΞA,

eA = vecEA,

(2b)
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with (1b) as its stochastic component.

3. Themodel of direct observationswith non-linear

constraints is written as

µy
n×1

:= y − ey ⇒ (3a)

⇒


y = µy + ey,

vecA = ξA + eA,

µy − ΞA · ξ = 0,

(3b)

with (1b) as its stochastic component.

4. The Errors-In-Variables (EIV) model is written as

y − ey = (A− EA)ξ, (4)

with (1b) as its stochastic component.

The terms of the models, and their sizes, are de-

fined as follows:

y is a given n × 1 vector of (incremental) observa-

tions.

A is a given n × m matrix of random coefficients

(“data matrix”) that has full column-rank.

EA is an n × m matrix of unknown random errors

associated with A.

ξ is an m × 1 vector of unknown (incremental) pa-

rameters.

ey is an n × 1 vector of unknown random errors as-

sociated with the observation vector y.

eA is an nm × 1 vector of unknown random errors,

being the vectorization of matrix EA.

µy is an n×1 vector of true observables correspond-
ing to y.

ΞA is an unknown n×mmatrix of true observables

corresponding to matrixA, and, likeA, it has full

column-rank.

ξA is an unknown nm × 1 vector, being the vector-

ization of matrix ΞA.

σ2
0 is an unknown variance component (being unit

free).

Qy is a given positive-definite cofactor matrix of size

n× n associated with ey.

QA is a given positive-definite cofactor matrix of size

nm× nm associated with eA.

2. EÝã®Ã�ã�� Øç�Äã®ã®�Ý

2.1. Estimates within the Gauss-Helmert model

The Gauss-Helmert model is given in detail as

y = A
n×m

ξ +Be, (5a)

B
n×n(m+1)

:=
[
In −(ξ0 ⊗ In)

T
]
, (5b)

with (1b) as its stochastic component.

Minimization of the random errors in the model,

based upon the method of least-squares adjustment,

leads to the following estimated and predicted quan-

tities.

Them× 1 vector of estimated parameters is given

by

ξ̂ =
[
AT (BQBT )−1A

]−1
AT (BQBT )−1y (6a)

with itsm×m dispersion matrix provided by

D{ξ̂} = σ2
0

[
AT (BQBT )−1A

]−1
= (6b)

= σ2
0

{
AT [Qy + (ξ0 ⊗ In)

TQA(ξ0 ⊗ In)]
−1A

}−1
.

(6c)

Here, the nonrandom vector ξ0 is numerically equiva-

lent to the random estimate ξ̂, with randomness hav-

ing been formally stripped from the former via the re-

lationship

ξ0 = ξ̂ − 0˜, (6d)

where0˜ is called a “random zero-vector” after Harville

(1986).

In addition, the unknown variance component can

be estimated by

σ̂2
0 = (Bẽ)T (BQBT )−1(Bẽ)/(n−m), (7a)

which depends on the predicted residual vector

ẽ = QBT (BQBT )−1(y −Aξ̂). (7b)

2.2. Estimates within the Gauss-Markov model

The Gauss-Markov model reads[
y

vecA

]
=

[
ξT ⊗ In
Inm

]
ξA +

[
ey
eA

]
, (8a)

ξA = vecΞA = vec(A− EA), (8b)

y = ΞA · ξ + ey, (8c)

with (1b) as its stochastic component.

Linearization about the approximate points ξ0 and
Ξ0
A leads to

y = Ξ0
A · ξ0 + Ξ0

A · (ξ − ξ0)+

+ (ξT0 ⊗ In)(ξA − ξ0A) + · · ·+ ey,
(9a)

implying that[
y − Ξ0

A · ξ0
vec(A− Ξ0

A)

]
≈

≈
[
Ξ0
A ξT0 ⊗ In
0 Inm

] [
ξ − ξ0
ξA − ξ0A

]
+

[
ey
eA

]
.

(9b)

Then, it follows that the unknown parameters (minus

the approximate points) are estimated by[
ξ̂ − ξ0
ξ̂A − ξ0A

]
=

([
(Ξ0

A)
T 0

ξ0 ⊗ In Inm

] [
Q−1

y 0

0 Q−1
A

]
·

·
[
Ξ0
A ξT0 ⊗ In
0 Inm

])−1

·

·
[
(Ξ0

A)
T 0

ξ0 ⊗ In Inm

] [
Q−1

y 0

0 Q−1
A

] [
y − Ξ0

A · ξ0
vec(A− Ξ0

A)

]
,

(9c)
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with theirm×m dispersion matrix provided by

D{
[
ξ̂ − ξ0
ξ̂A − ξ0A

]
} =

= σ2
0

([
(Ξ0

A)
T 0

ξ0 ⊗ In Inm

] [
Q−1

y Ξ0
A ξT0 ⊗Q−1

y

0 Q−1
A

])−1

= σ2
0

[
(Ξ0

A)
TQ−1

y Ξ0
A ξT0 ⊗(Ξ0

A)
TQ−1

y

ξ0 ⊗Q−1
y Ξ0

A ξ0ξ
T
0 ⊗Q−1

y +Q−1
A

]−1

,

(9d)

finally leading to the matrix

D{ξ̂} = σ2
0

[
(Ξ0

A)
TQ−1

y Ξ0
A − (ξ0 ⊗Q−1

y Ξ0
A)

T ·

· (ξ0ξT0 ⊗Q−1
y +Q−1

A )−1(ξ0 ⊗Q−1
y Ξ0

A)
]−1

(9e)

being the Schur complement of the lower principle

submatrix of (9d).

The estimated variance component is provided by

σ̂2
0 = (ẽTy Q

−1
y ẽy + ẽTAQ

−1
A ẽA)/(n−m), (9f)

where

ẽA = vecA− ξ̂A and ẽy = y − (A− ẼA)ξ̂ (9g)

are the respective vectors of predicted residuals.

2.3. Estimates within the model of direct observa-

tions with non-linear constraints

The model can be stated as

y = µy + ey
vecA = ξA + eA

}
⇒[

y
vecA

]
=

[
In 0
0 Inm

] [
µy

ξA

]
+

[
ey
eA

]
,

(10a)

with

µy − (ξT ⊗ In)ξA = 0, (10b)

and with (1b) as its stochastic component.

Linearization allows formation of the equation

µy
n×1

− Ξ0
A · ξ0 ≈ Ξ0

A(ξ − ξ0)
m×1

+

+ (ξT0 ⊗ In)(ξA − ξ0A)
nm×1

,
(11a)

which implies that[
(Ξ0

A)
TQ−1

y Ξ0
A

]
· (ξ − ξ0) = (Ξ0

A)
TQ−1

y ·
·(µy − Ξ0

Aξ0)− (ξ0 ⊗Q−1
y Ξ0

A)
T (ξA − ξ0A), (11b)

leading to the estimated quantity

ξ̂ − ξ0 =

=
[
(Ξ0

A)
TQ−1

y Ξ0
A

]−1
(Ξ0

A)
TQ−1

y (µ̂y − Ξ0
Aξ0)−

−
[
ξT0 ⊗

[
(Ξ0

A)
TQ−1

y Ξ0
A

]−1
(Ξ0

A)
TQ−1

y

]
(ξ̂A − ξ0A).

(11c)

Note that the equation{
In − Ξ0

A

[
(Ξ0

A)
TQ−1

y Ξ0
A

]−1
(Ξ0

A)
TQ−1

y

}
·

· (µ̂y − Ξ0
Aξ0)−

−
(
ξT0 ⊗

{
In − Ξ0

A

[
(Ξ0

A)
TQ−1

y Ξ0
A

]−1
(Ξ0

A)
TQ−1

y

})
·

· (ξ̂A − ξ0A) = 0
n×1

(11d)

contains n − m independent constraints and can be

written more succinctly as

Ky(µ̂y − Ξ0
Aξ0)−KA(ξ̂A − ξ0A) = 0, (11e)

with obvious definitions for matrices Ky of size

(n − m) × n and KA of size (n −m) × nm. More-

over, by subtracting Ξ0
Aξ0 and vecΞ0

A from the first

and second lines of (10a), respectively, we arrive at

y − Ξ0
Aξ0 = (µy − Ξ0

Aξ0) + ey (11f)

and

vec(A− Ξ0
A) = (ξA − ξ0A) + eA. (11g)

The unconstrained estimates and their associated

dispersion matrix are then given by[
µ̂y − Ξ0

Aξ0
ξ̂A − ξ0A

]
u

=

[
y − Ξ0

Aξ0
vec(A− Ξ0

A)

]
, (12a)

D{
[
µ̂y − Ξ0

Aξ0
ξ̂A − ξ0A

]
u

} = σ2
0

[
Qy 0
0 QA

]
, (12b)

respectively. Here, the subscript u stands for uncon-

strained, and below the subscript c stands for con-

strained. The differences between the constrained

and unconstrained estimates are given by[
µ̂y − Ξ0

Aξ0
ξ̂A − ξ0A

]
c

−
[
µ̂y − Ξ0

Aξ0
ξ̂A − ξ0A

]
u

=

=

[
(µ̂y)c − (µ̂y)u
(ξ̂A)c − (ξ̂A)u

]
=

[
(µ̂y)c − y

(ξ̂A)c − vecA

]
=

=

[
QyK

T
y

−QAK
T
A

]
(KyQyK

T
y +KAQAK

T
A)

−1·

·
{
0−Ky(y − Ξ0

A · ξ0) +KA

[
vec(A− Ξ0

A)
]}

,

(13a)

with the associated dispersion matrix

D{
[

(µ̂y)c − y

(ξ̂A)c − vecA

]
} = σ2

0

[
QyK

T
y

−QAK
T
A

]
·

· (KyQyK
T
y +KAQAK

T
A)

−1·
·
[
KyQy −KAQA

]
.

(13b)

Nowwe proceedwith the constrained solution, but

drop the subscript c, in the following. Equation (13a)
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implies[
µ̂y

ξ̂A

]
= −

[
QyK

T
y

−QAK
T
A

]
(KyQyK

T
y +KAQAK

T
A)

−1·

·
[
Ky −KA

]
·
[
y − Ξ0

A · ξ0
vec(A− Ξ0

A)

]
+

[
y

vecA

]
=

=
(
In(m+1) − S

) [ y
vecA

]
+ S

[
Ξ0
A · ξ0

vecΞ0
A

]
,

(14a)

with the n(m+ 1)× n(m+ 1)matrix S defined as

S :=

[
QyK

T
y (KyQyK

T
y +KAQAK

T
A)

−1Ky

−QAK
T
A(KyQyK

T
y +KAQAK

T
A)

−1Ky

−QyK
T
y (KyQyK

T
y +KAQAK

T
A)

−1KA

QAK
T
A(KyQyK

T
y +KAQAK

T
A)

−1KA

]
.

(14b)

Now, substituting (14a) into (11c) allows the esti-

mate ξ̂ to be written as an update to the (given) ap-

proximate vector ξ0 as

ξ̂ = ξ0 +
[
(Ξ0

A)
TQ−1

y Ξ0
A

]−1·
·
[
(Ξ0

A)
TQ−1

y −(ξ0 ⊗Q−1
y Ξ0

A)
T
]
·

·
([

In 0
0 Inm

]
−
[
S11 S12

S21 S22

])[
y − Ξ0

A · ξ0
vecA− vecΞ0

A

]
,

(15a)

with the obvious partitioning of matrix S into four

submatrices. Clearly, the vector ξ0 and the matrixΞ0
A

are nonrandom, since they contain (given) approxi-

mate values, e.g., expansion points of a Taylor series.

Thus, the only random terms in (15a) are the vector y
and the matrixA, with respective dispersion matrices

D{y} = σ2
0Qy and D{vecA} = σ2

0QA. Hence, the

dispersion of ξ̂ can be approximated by the law of er-

ror propagation, resulting in

D{ξ̂} =

= σ2
0 ·

[
(Ξ0

A)
TQ−1

y Ξ0
A

]−1
[

Q−1
y (Ξ0

A)
−(ξ0 ⊗Q−1

y Ξ0
A)

]T
·

· (In(m+1) − S)

[
Qy 0
0 QA

]
(In(m+1) − S)T ·

·
[

Q−1
y (Ξ0

A)
−(ξ0 ⊗Q−1

y Ξ0
A)

] [
(Ξ0

A)
TQ−1

y Ξ0
A

]−1
.

(15b)

Finally, the respective predicted residual vectors

are computed by

ẽy = y − µ̂y and ẽA = vecA− ξ̂A. (16)

2.4. Estimates within the Errors-In-Variables (EIV)

model

The EIV model can be written as

y − ey = (A− EA)ξ, (17)

with (1b) as its stochastic component.

However, if (1b) is specialized so that QA =
Q0 ⊗Qy (implyingQx = Qy), andQ0 andQy are di-

agonal matrices, then the application of (total) least-

squaresminimization leads to the nonlinear system of

normal equations

(N − ν̂Q0)ξ̂ = c, (18a)

with [
N c

]
:= (Ξ0

A)
TQ−1

y

[
Ξ0
A y

]
(18b)

and

ν̂ = (y − Ξ0
Aξ0)

T (y − Ξ0
Aξ0)/(1 + ξT0 Q0ξ0),

(18c)

where ν̂ turns out to be the Total Sum of Squared

Residuals (TSSR) (see Schaffrin andWieser (2008) and

Schaffrin (2015)). Moreover, in the case where Q0 =
Im, the TSSR ν̂ is also the smallest eigenvalue of the

matrix

[
N c

cT yTQ−1
y y

]
in agreement with Golub and

van Loan (1979).

The nonlinear system of equations (18a) can be lin-

earized via a truncated Taylor series expansion, result-

ing in the “total differential”

N · dξ̂ −Q0dξ̂ · ν0 −Q0ξ0 · dν̂ = (Ξ0
A)

TQ−1
y dy,

(19a)

or

dξ̂ = (N − ν0Q0)
−1

(
Q0ξ0 · dν̂ + (Ξ0

A)
TQ−1

y dy
)
,

(19b)

where the expansion points ξ0,Ξ
0
A, and ν0 are known

approximately. Now, (19b) is linear in the random

variables y and dν̂ (alsoD{dν̂} = D{ν̂} etc.). There-
fore the law of variance (error) propagation may be

applied, leading to them×m dispersion matrix

D{ξ̂} = (N − ν0Q0)
−1·

· (σ2
0N +Q0ξ0 ·D{ν̂} · ξT0 Q0)(N − ν0Q0)

−1.
(19c)

Obviously, an expression for D{ν̂} is required

for (19c).

Since ν̂ provides the TSSR, it follows that

σ̂2
0 = ν̂/(n−m) (20a)

provides an estimate of the unknown variance com-

ponent σ2
0 appearing in (1b). It is well known that

the estimate can also be derived from the principle of

BIQUUE (Best Invariant QuadraticUniformlyUnbiased

Estimate), and so can its dispersion, which is provided

by

D{σ̂2
0} = 2(σ2

0)
2/(n−m), (20b)

implying that

D{ν̂} = (n−m)2 ·D{σ̂2
0} = 2(σ2

0)
2(n−m)

(20c)

in this special case of diagonal cofactor matrices Q0

andQy. Thus, we may rewrite (19c) as
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D{ξ̂} = σ2
0 · (N − ν0Q0)

−1·
· (N +Q0ξ0 · 2σ2

0(n−m) · ξT0 Q0)(N − ν0Q0)
−1.
(20d)

Of course, (20d) cannot actually be computed due

to the unknown term σ2
0 , but the usual remedy is to

replace the unknown quantity by its estimate. More-

over, in any iteration scheme the value assigned to the

quantity ν0 may be taken from ν̂0 upon convergence

(and likewise ξ̂ for ξ0), thus justifying the following

formula for practical problems:

D̂{ξ̂} = (n−m)−1ν̂ · (N − ν̂Q0)
−1·

· (N +Q0ξ̂ · 2ν̂ · ξ̂TQ0)(N − ν̂Q0)
−1.

(21a)

or

D̂{ξ̂} = (n−m)−1 · (ν̂−1N −Q0)
−1·

· (ν̂−1N + 2 ·Q0ξ̂ξ̂
TQ0)(ν̂

−1N −Q0)
−1.

(21b)

Obviously, ifQ0 = Im, then (21a) reduces to

D̂{ξ̂} = (n−m)−1ν̂ · (N − ν̂Im)−1·

· (N + ξ̂ · 2ν̂ · ξ̂T )(N − ν̂Im)−1. (21c)

Finally, the predicted residual vector andmatrix are

computed by

ẽy = (1 + ξ̂TQ0ξ̂)
−1 · (y −Aξ̂) (22a)

and

ẼA = −(1 + ξ̂TQ0ξ̂)
−1 · (y −Aξ̂)ξ̂TQ0, (22b)

respectively, in the specialized case whereQx = Qy.

3. NçÃ�Ù®��½ �ø�ÃÖ½�

We have chosen the relative simple problem of a 1-D

similarity transformation (or Helmert transformation)

for our numerical example, as it serves primarily to il-

lustrate the formulas presented in the preceding sec-

tions. Solving this transformation problem is tanta-

mount to fitting measured coordinates to a 2-D line,

which might be done in a variety of deformation-

monitoring applications. It can also be used to esti-

mate offset and scale parameters between two sets

of heights estimated fromdifferent survey campaigns,

a case of particular interest in monitoring the verti-

cal stability of aman-made structure or characterizing

surface subsidence due to subsurface water or min-

eral extraction.

Below are results from 2D line fitting. One data set

is from Pearson (1901), being coordinates given with-

out units. The other is from Haneberg (2004), where

the x-variables are rain fall in mm and the y-variables
are change in water level in cm. In both cases the data

are considered iid with Q0 = [ 1 0
0 0 ], and Qy = Qx =

Im. The estimated slope is denoted by ξ̂1, while ξ̂2
refers to the estimated y-intercept.

The least-squares solutions within all four models

described above yield precisely the same parameter

Table 1: Two data sets for 2D line fitting

Pearson Haneberg

No. x y xmm y cm

1 0 5.9 1.94 2.50

2 0.9 5.4 3.33 1.89

3 1.8 4.4 3.22 1.67

4 2.6 4.6 5.67 1.31

5 3.3 3.5 4.72 1.02

6 4.4 3.7 3.89 0.96

7 5.2 2.8 2.78 1.10

8 6.1 2.8 10.56 0.15

9 6.5 2.4 9.44 3.92

10 7.4 1.5 12.78 5.23

11 14.72 4.22

12 13.61 3.63

13 20.39 4.32

14 38.89 5.89

estimates, sum of squared residuals (SSR), and resid-

ual vectors, which are listed in Tables 2 and 3. They are

shown there at a greater precision than what is war-

ranted, which would allow others to more precisely

compare the output of their own algorithms.

Table 2: Parameter estimates for 1D similarity trans-

formation problems. The Pearson estimates are unit-

less. The units for Haneberg are cm/mm for slope ξ̂1
and cm for y-intercept ξ̂1.

Data set n TSSR ξ̂1 ξ̂2
Pearson 10 0.6186 -0.5456 5.7840

Haneberg 14 17.9659 0.1396 1.2455

Table 3: 2D-line residuals computed for two data sets

Pearson Haneberg

ẽx ẽy ẽx mm ẽy cm
-0.048751 0.089360 -0.134692 0.964862

-0.044969 0.082428 -0.024596 0.176191

0.169026 -0.309820 0.003426 -0.024541

-0.098554 0.180648 0.099551 -0.713135

0.203357 -0.372748 0.121101 -0.867509

-0.133034 0.243847 0.113452 -0.812712

0.061856 -0.113380 0.073065 -0.523398

-0.144576 0.265004 0.351859 -2.520541

-0.068153 0.124922 -0.185769 1.330756

0.103800 -0.190262 -0.301302 2.158375

-0.125922 0.902040

-0.066351 0.475308

-0.031234 0.223745

0.107411 -0.769440

In contrast, the dispersion matrix within the EIV

model, based on (21a), deviated somewhat from the

dispersion matrices computed within the other three

models. The first pair of empirical standard deviations

(σ̂1 and σ̂2) for each data set (labeled EIV in Table 4)

were computed from (21a). The second pair were

computed by the corresponding formulas within the
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other threemodels, which were in precise agreement

with each other. In all cases, the estimated variance

component σ̂2
0 was substituted for the unknown, true

one, hence the term “empirical standard deviation.”

Table 4 reveals that, for these data sets, the empiri-

cal standard deviations based on (21a) are less than

or equal to those based on the formulas associated

with the other threemodels, i.e., equations (6b), (9e),

and (15b).

Table 4: Empirical standard deviations of estimated

parameters in the 1D similarity transformation prob-

lems
Equations/ (21a) EIV (6b), (9e), (15b)

Data set σ̂1 σ̂2 σ̂1 σ̂2

Pearson 0.0376 0.1684 0.0422 0.1899

Haneberg 0.0348 0.4882 0.0346 0.4890

It is also interesting to compare the values in Table 4

with those computed from equation (23) in Schaffrin,

Lee, et al. (2006), which reads

D̂{ξ̂} ≈ σ̂2
0 · (N − ν̂Im)−1N(N − ν̂Im)−1.

These turn out to be σ̂1 = 0.0375 and σ̂2 = 0.1680
for the Pearson data and σ̂1 = 0.0348 and σ̂2 =
0.4881 for the Haneberg data. It is not surprising

that they are slightly smaller than those computed

from (21a) of this paper, since the middle term in that

formula includes ξ̂·2ν̂·ξ̂T , which does not appear in

the equation above.

4. CÊÄ�½çÝ®ÊÄÝ �Ä� Êçã½ÊÊ»

In this contribution, we have shown how to generate

equivalent least-squares solutions for estimated pa-

rameters and predicted residuals among four differ-

ent data models. We have also shown that the dis-

persion (variance-covariance) matrix for the parame-

ter estimates in the EIV model will vary slightly from

those computed within the other three models if our

proposed formula (21a) is used. We argue that (21a)

represents a step forward in deriving an accurate for-

mula for the dispersion matrix within the EIV model;

however, more work is needed to bring the derivation

to full maturity as noted below.

Equation (21a) was derived for an EIV model with

stochastic propertiesQA = Q0 ⊗Qy , implyingQx =
Qy. While this made the derivation tractable, it is

a somewhat restrictive requirement. In future work,

we hope to extend the formula in two steps. First,

we want to remove the restriction that Qx = Qy.

Second, we want to allow QA to be any symmet-

ric, positive-(semi)definite cofactor matrix, thereby

allowing for a much wider range of problems to be

handled, including those that give rise to a structured

designmatrixA. In suchmodels the same variable ap-

pearsmore than once in the designmatrix. One exam-

ple is a 2D similarity transformation commonly used in

geodetic and deformation-monitoring problems.
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