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ABSTRACT 

Soil erosion is a natural process involving soil loss rates of about 2 t ha-1 year-1. This process can be heavily 
intensified due to human activity, inducing losses of up to 100 t ha-1 year-1, further leading to significant land 
cover alteration and soil productivity decrease. Climate change is a human-induced agent that affects several 
factors underlying soil erosion in various ways. In mountain areas, climate change may be significantly 
detrimental to the landscape and soil productivity, especially for the upper convex hillslope parts (summits, 
shoulders etc.), where soil displacement is not frequently counterbalanced by soil formation. In this paper, a 
methodology for estimating and mapping soil loss by water erosion in a mountainous region (Metsovo, Greece) 
is developed. To this end, an effective erosion model (RUSLE) is utilized by combining and fine-tuning data from 
climate models, geospatial data, and UAV imagery: the climate models are downscaled providing input data; the 
UAV, equipped with a multispectral sensor, supports precise land cover classification, DEM generation and the 
computation of suitable indices. The results show that both the enhanced land classification scheme derived 
from the UAV imagery, and the future scenarios regarding climate and rainfall erosivity change affect the 
estimated soil loss rates. The aggravated soil loss rates are meant to deform more seriously the more elevated 
and rugged parts of the landscape, while the subsequent land degradation poses environmental and socio-
economic concerns for the mountainous but productive and active region of Metsovo, under the influence of 
climate change.  

 

I. INTRODUCTION 

A. Soil Loss and Erosion Models 

One of the major consequences of water erosion is 
soil loss. Soil loss rates of about 2 t ha-1 year-1 occur due 
to natural erosional processes (Nearing et al., 2017). 
This type of erosion (geological) can be significantly 
aggravated by human intervention, inducing losses of 
up to 100 t ha-1 year-1 (Julien, 2010), further leading to 
significant terrain deformation, land degradation, soil 
productivity decrease and overall environmental 
quality degradation (Pimentel, 2006; Lal, 2014).  

Aside from the significance of understanding the 
underlying rainfall erosion processes (e.g. Wainwright 
et. al., 2003), identifying the areas susceptible to 
erosion and quantitatively estimating the soil loss is 
crucial towards the development of proper soil 
protection practices (Shi et al., 2004). Erosion models 
support these two – theoretical and practical – 

dimensions and have led to the systematic investigation 
of the interplaying factors affecting the processes. In 
essence, the climate-topography-soil-vegetation 
‘nexus’ summarizes the generic erosion process, while 
soil loss is one of the main measured features, 
associated with the quantitative description of the 
erosion consequences.   

In a recent review paper (Karydas et al., 2014), among 
over 80 erosion models, the (R)USLE ((Revised) 
Universal Soil Loss Equation) family models are shown 
to be adequate approximations for modelling the soil 
loss feature of the overall water erosion process. Such 
models and, especially the RUSLE ones, are GIS-based 
models employing geospatial analyses that are not 
limited to the simple map algebra or overlaying 
functions (for raster and vector geo-datasets, 
respectively). Contrariwise, they employ Pathway (PW) 
type methodologies, in the sense that they incorporate 
topological relations (e.g. neighborhood or proximity), 
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while their outputs are computed based on stepwise 
techniques (e.g. flow accumulation, network analysis). 
Overall, they are suitable for “field- to hillslope-scale, 
temporally averaged assessments of soil loss” (Karydas 
et al., 2014: 242). 

The fundamental equation underlying the RUSLE GIS-
based models is the following (Renard et al., 1997; 
Panagos et al., 2015a): 

 
𝐸𝐴 = 𝑅 ∗ 𝐾 ∗ 𝐿𝑆 ∗ 𝐶 ∗ 𝑃                               (1) 

 
where 𝐸𝐴: annual average soil loss (t ha-1 year-1) 

 𝑅: rainfall erosivity/ erodibility factor (MJ mm 
ha-1 h-1 year-1) 

 𝐾: soil erodibility factor (t ha h ha-1 year-1 MJ-1 

mm-1) 
 𝐿𝑆: slope length and slope steepness 

(topographic) factor (dimensionless) 
 𝐶: cover-management factor (dimensionless) 
 𝑃: support practices factor (dimensionless) 
 
Yet, the calculation of the annual average soil loss and 

the attribution of spatial reference to the 
corresponding results (i.e. production of soil loss maps) 
requires processing and adjustment of the multifarious 
(geospatial) input data (climatic, topographic etc.) and 
implementation of appropriate geospatial analyses. 
Towards this end, the ‘incorporation’ of the RUSLE in 
GIS environments – an already entrenched approach 
(e.g. Prasannakumar et al. 2012; Gupta and Kumar, 
2017) – needs to be applied by means of an explicit geo-
spatial approach and by making use of parameterizable 
input data. Climate change, potentially aggravating the 
accelerated erosion or soil loss (Li and Fang, 2016), is 
considered a modifier of some of the five factors of the 
RUSLE model (Gupta and Kumar, 2017). Its effect, 
particularly in mountain regions, is described in the 
subsequent section.  

 
B. Climate Change and Soil Loss in Mountain Regions  

Soil loss due to water erosion constitutes a major 
problem of soil degradation and terrain deformation in 
mountain regions of Greece. It depends both on climate 
conditions (mainly atmospheric precipitation) and on 
terrain and vegetation features.  

Regarding the part of landscape, mountain regions 
are more susceptible to soil erosion, mainly due to (a) 
their intense relief with steep slopes, (b) the presence 
of shallow soils (lithosols) and a fairly high percentage 
of impermeable rocks, (c) the frequent forest fires and 
(d) the poor soil management practices / unreasonable 
use of natural resources, i.e. land clearing and 
cultivation of highly sloping soils, unreasonable logging, 
overgrazing, etc. As far as climate conditions are 
concerned, climate change is expected to affect spatial 
expansion, frequency and magnitude (intensity) of soil 
erosion in a variety of ways (Pruski and Nearing, 2002; 

Mullan et al., 2012). These impacts may be direct and 
associated with variations in the amount of 
precipitation (Nearing et al., 2004; Bangash et al., 
2013), the intensity of precipitation (Zhang, 2012), or its 
spatio-temporal allocation patterns (Maeda et al., 
2010; Li and Fang, 2016). However, the impacts may be 
indirect and related to the new climate regime, mainly 
through temperature rise (Mullan et al., 2012; Li and 
Fang, 2016), a fact reflected in vegetation changes, as 
well as in soil moisture (Nearing et al., 2004; Li and Fang, 
2016). The most ‘remote’ indirect impacts include 
cultivation practices adopted (e.g. changes in sowing 
and harvesting periods or crop varieties), as responses 
to precipitation changes (Nunes and Nearing, 2011; 
Parajuli et al., 2016). 

Beyond temperature and precipitation, variables 
such as relative humidity, clouds, wind, etc. are 
expected to change in the general context of climate 
change (Flannigan et al., 2006), modifying, in this way, 
extreme events, such as increased periods of heat-wave 
conditions, increase of the frequency and intensity of 
storms/floods/prolonged droughts during the summer 
period and increase of lighting fires (Mearns et al., 
1989; Solomon and Leemans, 1997). These 
phenomena, as well as other crucial factors in mountain 
regions such as forest fires, aggravate soil erosion rates 
(Inbar et al., 1998; Kosmas et al., 2006; McNabb and 
Swanson, 1990; Dieckmann et al., 1992).  

Therefore, climate change has a significant impact on 
soil loss due to water erosion. The quantification of this 
impact should be included in relevant models, in order 
to realistically assess annual average soil loss in an 
integrated way. Towards this end, climate models are 
utilized.  

Global Climate Models (GCMs) are the primary tools 
used for making projections of the future climate (Flato 
et al., 2013). Even though GCMs have been developed 
and improved, they still provide projections of climate 
variables, such as precipitation and temperature, at a 
spatial resolution of 100-300 km. This resolution is too 
coarse to be directly used in local impact studies (Yang 
et al., 2015; Gupta and Kumar, 2017), especially in 
mountainous areas which are characterized by complex 
topography with alternations of vegetation and land 
cover within a few kilometers (Pepin et al., 2015). 
Climate projections for Europe derived from dynamic 
downscaling at grid resolutions of about 12km are 
available in the database of the EURO-CORDEX initiative 
(Jacob et al., 2014). However, hydrological models 
often require rainfall data of higher spatial resolution, 
thus spatial interpolation techniques such as Nearest 
Neighbor (NN), Thiessen polygons, Spline and various 
forms of Kriging and Inverse Distance Weighting (IDW) 
are applied to further downscale RCM’s (Regional 
Climate Models’) rainfall data (Yang et al., 2015). In 
addition, the direct application of RCMs in many impact 
modelling studies is hampered by model biases, 
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therefore bias correction techniques are applied to 
ensure a better agreement between models and 
observations (Casanueva et al., 2015). 

 
C. Aims and Rationale 

Since erosion processes in mountainous areas are 
associated to great soil losses, this paper aims at the 
development of a methodology for estimating this loss 
in a typical mountainous region of Greece, Metsovo, 
based on the RUSLE model (Renard et al., 1997; 
Panagos et al., 2015). This methodology utilizes data 
derived from climatic models and from UAV’s 
multispectral image captures employing geospatial 
analyses. The introduction of climatic data referring to 
future dates and refined land cover geospatial data, 
along with their integration into erosion models, are 
novel contributions resulting in more fine-tuned and 
climate change-based soil loss estimations. In essence, 
in the proposed soil loss model, the R-, C-, LS and P-
factors are parameterized and calculated on the basis 
of future rainfall intensity and different classification 
schemes according to well-established practices, while 
K-factor is acquired by pertinent databases (Figure 1).    

 

 
Figure 1. Inputs-outputs for the proposed Climate Change-

based Soil Loss Model. R-factor is affected by climate change 
data, while C-, LS- and P-factors get refined inputs from 

processed UAV imagery (based on Panagos et al., 2015a - 
modified) 

 

II. MAIN BODY 

A. Study Area 

The study area, Metsovo, is located in a mountainous 
region of Greece, called Epirus. More precisely, a 1.3 
km2 area in the wider area of Metsovo town is selected 
due to its increased water erosion problems. 

The area, with a mean elevation exceeding 1000 m 
and rather steep hillslopes (mean slope > 15o), presents 
increased rainfall and precipitation (> 1000 mm year-1), 
while its general land cover is characterized by mixed 
croplands, natural grasslands and coniferous forests. 

 

                                                           
1 Geoportal’s  website: http://www.igme.gr/geoportal/ 

 

B. Data Collection and Initial Processing 

For the estimation of the annual average soil loss (EA), 
the RUSLE model was implemented in a GIS 
environment. Therefore, the data for each RUSLE factor 
were collected and processed in order to constitute 
suitable geospatial input data for the model. 

 
Climatic Data 
For the study area, data of precipitation for the period 

1961-2000 (historic climate) and the period 2011-2050 
(future climate) were obtained from the EURO-CORDEX 
database, in the form of monthly time series. The data 
are downscaled simulations of the RACMOE22 regional 
model driven by EC-EARTH global model for two RCP 
(Representative Concentration Pathway) scenarios, 
namely RCP4.5 and RCP8.0, in a spatial resolution of 
0.11o. Data of both historical and future period were 
downscaled at a point level using the Nearest 
Neighbour method. Downscaled climate data were 
bias-corrected using daily precipitation data for the 
period 1961-1990 from the hydrometeorological 
station of Greek ministry of Environment in Metsovo, 
available in the database of the research project 
Hydroscope (Sakellariou et al., 1994). 

 
Soil Data 
Soil data were acquired from the European Soil 

Database v2 Raster Library 1kmx1km (Panagos, 2006; 
Van et al., 2006) and the cartographic portal of the 
Institute of Geology and Mineral Exploration (IGME)1. 
The European Soil Database provides data for various 
soil properties of which the soil erodibility class and soil 
classification raster layers were used. According to the 
IGME cartographic portal, the study area lies entirely on 
top of a sandstone layer, displaying very strong 
erodibility. 

 
UAV Imagery and Land Cover Data 
The area was scanned with an UAV taking multiple 

multispectral captures with a constant interval, utilizing 
PiX4Dcapture flight technology which provides the user 
the ability to completely scan a certain area along a grid, 
the resolution of which is automatically computed 
based on the UAV’s flight altitude. Due to the rugged 
terrain of the area, the flight altitude ranged 
approximately between 50 – 300m. The multispectral 
images were georeferenced and merged together in a 
seamless mosaic using AgiSoft PhotoScan®. By this 
procedure, a multispectral (1.2MP), 4-band (Green, 
Red, Red Edge, and Near Infrared (NIR)) image (1m 
spatial resolution) of the study area was produced. The 
image was further classified on the basis of an object-
oriented, multiresolution procedure, using eCognition® 
software. The image was initially segmented by making 
several trials, and then was classified in 6 classes/ land 
covers using the samples’ method. The results of the 
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produced land cover map were verified by means of 
ground truthing2.  

 
Topographic Data – DEM 
The AgiSoft PhotoScan® software was also employed 

to generate the DEM (Digital Elevation Model) of the 
area. DSM (Digital Surface Model) is generated from the 
software by taking into consideration the complete 
point dense cloud, while DEM was derived based on 
ground points only. The classification of the ground 
points was attained by properly defining certain 
thresholds regarding surface points’ angle and distance. 
The spatial (x,y) resolution of the generated DEM was 1 
m, while its z-information was calibrated using 
elevation ground control points. DEM’s elevation values 
ranged from 899 m to 1178 m (Figure 2), with mean and 
standard deviation values of 1008.93 m and 58.87 m, 
correspondingly. 

 

 
Figure 2. DEM derived from the UAV captures 

 
C. Methodology - RUSLE Factor Generation 

The methodology utilized refers to the calculation of 
each of the RUSLE equation factors and the overall 
implementation of RUSLE, employing raster-based 
geospatial analyses in a GIS environment. In the 
following part, the computation of each of the five 
factors in a GIS environment is described. EA results 
from the multiplication of the cell values of each of the 
five raster intermediate outputs through a map algebra 
operation. 

 
Rainfall Erosivity (R) 
The erosive force of rainfall is commonly expressed 

by the R-factor of the RUSLE model, which combines the 
effects of duration, magnitude and intensity of each 
rainfall event (Panagos et al., 2015c). R-factor is 
calculated as the product of storm kinetic energy and 
maximum 30-min intensity (EI30) of each storm event, 
while its analytical calculation requires sub-hourly 
precipitation data for a long period over 20 years 

                                                           
2 Due to the high resolution of the images captured in a relatively 

low altitude, the photointerpretation of the image enabled the 
comparison of the classified map with the actual features of the 
images. However, we had to classify the UAV imagery according to 

(Hernando and Romana, 2015). Historical records of 
these data are usually not available in many regions, 
including the Mediterranean region (Diodato and 
Bellocchi, 2010), while the output of climate models 
does not provide data with sufficient temporal 
resolution (Shiono et al. 2013; Panagos et al., 2017). 
Therefore, various simplified empirical models have 
been proposed for estimating R-factor from daily, 
monthly or annual precipitation data (Yin et al., 2015). 
For the case of Greece, there are equations for the 
estimation of monthly R-factor (Panagos et al., 2016) 
and annual R-factor (Flambouris, 2008), as functions of 
monthly and annual precipitation, respectively. 
However, these relationships do not consider the 
precipitation extremes (e.g. maximum daily 
precipitation), which are related to rainfall intensity.   

Diodato and Bellocchi (2010), analyzing the detailed 
multi-year datasets from 66 weather stations in the 
Mediterranean basin, proposed the following simplified 
equation (Model MedREM) for the calculation of multi-
year R-factor in MJ mm ha-1 h-1 y-1 in a location: 

 

 𝑅 = 𝑏𝑜 ∙ 𝑃 ∙ √𝑑 ∙ (𝑎 + 𝑏1 ∙ 𝐿)            (2) 
 

where  a, bo, and b1: coefficients with values 2.000, 
0.117 and -0.015, respectively 

P: annual rainfall (mm y-1) 
d: annual maximum daily rainfall (mm d-1 over 

a multi-year period)  
 L: location longitude (o) 

 
According to the validation performed by Diodato 

and Bellocchi (2010), the MedREM estimates fitted well 
with the R-factor values calculated from analytical data 
of 55 stations in the region and, hence, MedREM is 
recommended for long-term annual erosivity 
estimations in the Mediterranean. 

Annual rainfall and annual maximum daily rainfall for 
Metsovo were computed from downscaled and bias-
corrected daily rainfall data for two periods, namely 
2011-2030 (short-term) and 2031-2050 (long-term) and 
the two RCP scenarios (RCP4.5 and RCP8.5). Average 
annual and annual maximum daily rainfall over these 
periods were used as input in the MedREM equation in 
order to estimate R-factor. The results are presented in 
Tables 1 and 2 for scenarios RCP4.5 and RCP8.5, 
respectively. According to the results, the projected 
rainfall erosivity is expected to increase until 2050 in 
Metsovo approximately 97 MJ mm ha-1 h-1 y-1 in the 
RCP4.5 scenario (5,8%) and 366 MJ mm ha-1 h-1 y-1 in the 
RCP8.5 scenario (21,9%) compared to the current 
period 2011-2013 due to increase of both annual 
rainfall and daily maximum rainfall. 

the CLC classes, in order to be able to compare the output classes of 
the UAV classification with the CLC classification. So, the validation 
was based on the photointerpretation, restricted by the CLC 
classification. 
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 Table 1. Climate data and R-factor for RCP4.5 and RCP8.5 
scenarios 

 RCP4.5 RCP8.5 
Period 2011-2030 2031-2050 2011-2030 2031-2050 
P (mm y-1) 1210.6 1277.1 1179 1361 
d (mm d-1) 55.8 64.9 52.8 58.9 
R (MJ mm 
ha-1 h-1 y-1) 

1683 1780 1672 2038 

 
Soil Erodibility (K) 
Soil erodibility measures the susceptibility of soil 

particles to detachment and depends on several soil 
properties such as texture, structure, organic matter 
content etc. (Gupta and Kumar, 2017). Erodibility values 
for the study area were retrieved from a high-resolution 
(500m grid cell) erodibility dataset (Panagos et al., 2014 
Metsovo presents very strong erodibility values (0.05 t 
ha h ha−1 MJ−1 mm−1), since it is located on a flysch layer 
where erosion and landslides are common. 

 
Slope length and steepness factor (LS) 
The LS factor refers to the combination of the L- and 

S-factors. It estimates the combined effect of the slope 
length (L) and the slope steepness (S) of the terrain on 
the loss of soil. In the present analysis, the LS-factor was 
computed within a GIS environment, as a function of 
two DEM derivatives, namely slope steepness (SS) and 
flow accumulation (FA), according to the following 
equation proposed by Moore and Burch (1986a; 
1986b): 

 

𝐿𝑆 = (𝐹𝐴 ∗
𝐶𝑒𝑙𝑙 𝑆𝑖𝑧𝑒

22.13
)

0.4

∗  (
𝑠𝑖𝑛 𝑆𝐿

0.0896
)

1.3

     (3) 

 
where 𝐿𝑆: combined slope length/ steepness factor 

 𝐹𝐴: the accumulated upslope contributing 
area for a given cell 

 Cell Size: the size of the grid cell: 1 m  
 𝑠𝑖𝑛 𝑆𝐿: the slope degree value in sin  
  
For this study area, the LS-factor ranges from 0.36 to 

45.41, with the vast majority of the study area 
displaying LS values lower than 4, while LS values higher 
than 15 occupy a very small percentage of the study 
area. 

 
Cover Management Factor (C) 
Since land cover/ use and related management affect 

the magnitude of soil loss (Panagos et al., 2015b), C-
factor is meant to represent the soil-disturbing uses and 
activities. It is defined as the ratio of soil loss under the 
given vegetation cover/ conditions to the loss occurring 
under continuous bare-soil conditions (Alexandridis et 
al., 2013). In the present analysis, C-factor is calculated 
by resorting to remote sensing ratios, as follows (Van 
der Knijff et al., 1999):   

 

                                                           
3 CEU, Copernicus Land Monitoring Service, geoportal: 

https://land.copernicus.eu/pan-european/corine-land-cover/clc-
2012 

  𝐶 = 𝑒𝑥𝑝 (−𝑎 ∗
𝑁𝐷𝑉𝐼

𝛽−𝑁𝐷𝑉𝐼
)     (4) 

 
where 𝑁𝐷𝑉𝐼: Normalized Difference Vegetation 
Index – (NIR-RED / (NIR+RED) –, being an indicator of 
the vegetation vigor 
 𝛼, 𝛽: Parameters determining the shape of the 
NDVI-C curve. Values of 2 and 1, respectively, have been 
found to yield reasonable results (Van der Knijff et al., 
1999; Prasannakumar et al., 2012) 
   
Using this equation, the values for the C-factor for area 
under study varied between 0.07 and 1.53. It is worth 
noticing that this equation adequately approximates C-
factor since it has been successfully applied in areas 
featuring similar climatic, terrain, and land cover 
conditions (e.g. Prasannakumar et al., 2012) with these 
of the present study area. The usage of UAV imagery 
and NDVI enhances C-factor’s quality compared to the 
usage of other sources (outputs in existing databases or 
from satellite imagery), since it supports more refined 
and accurate estimations of the factor which are better 
suited to the characteristics of the specific study area.   
 

Support Practices (P) 
P-factor represents the soil loss ratio with a specific 

support practice to the corresponding soil loss with 
straight-row tillage up and down the slope (Renard et 
al., 1997). Of the five RUSLE factors, the values 
attributed to this factor are the most uncertain (Morgan 
and Nearing, 2011). 

In this study, the values for P-factor were attributed 
based on the land cover. Two classification schemes 
were utilized: a CORINE Land Cover (CLC) (2012)3, and 
the result of the classification based on the UAV 
multispectral images. Higher values correspond to 
areas with no conservation (natural grasslands, built-
up, forest), whereas the lowest values were assigned to 
areas occupied by agriculture, potentially applying 
strip/ contour cropping (Table 3). It should be noted 
that the higher resolution of the UAV photogrammetric 
reconstruction enabled a more detailed and reliable 
classification of the area. That is why in the case of the 
UAV classification 6 land cover classes occurred 
compared to the 4 classes of the CLC. 

 
Table 3. P-factor values and percentage of area for each 

land cover, under the two classification schemes (CLC 2012 
and UAV classifications) 

 CLC 2012 UAV  
Land Cover/ Area P-factor Area (%) P-factor Area (%) 

Built-up 0.8  0.50 0.8  3.29 
Paved - - 0.9  2.59 
Agricultural 0.4  63.21 0.4  47.89 
Coniferous forest 0.8  4.58 0.8  6.77 
Natural grassland 1  31.71 1  29.63 
Sparsely vegetated - - 0.7  9.83 

 

https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
https://land.copernicus.eu/pan-european/corine-land-cover/clc-2012
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 (Map 1a) 

 
(Map 1b) 

 
(Map 2a) 

 
(Map 2b) 

Figure 3. Soil loss rate (t ha-1 year-1) estimation. The maps 
produced correspond to the four alternatives of Table 4.  

 

D. Results 

The study area’s soil loss (t ha-1 year-1) is estimated for 
the two land cover classification schemes under the 
2011-2013 (present) RCP4.5 and the 2031-2050 (future) 
RCP8.5 scenarios. Table 4 summarizes the four 
estimated alternatives. These alternatives were 
selected in order to showcase the effect of climate 
change in its extreme occurrence, under land covers 
from existing databases (CLC 2012) or from classified 
UAV multispectral imagery.  

 
Table 4. Numbering of the four estimated alternatives  

 Land Cover Classification Scheme 

Scenario CLC 2012 UAV classification 

2011-30 RCP4.5 1a 2a 

2031-50 RCP8.5 1b 2b 

 
The spatial distribution of soil loss rate per case (Maps 

1a, 1b, 2a, 2b) is depicted in Figure 3, while the 
percentage of area affected per case and per soil loss 
rate class (from very low to very high, or from 0 to > 50 
t ha-1 year-1) is presented in Table 5. In all cases, upper 
parts of the landscape with more steep slopes display 
the highest rates.  

Table 5. Soil Loss classes by area (%) affected  

 Area affected (%) 

Soil loss rates 1a 1b 2a 2b 

Very Low 52.11 47.63 50.05 45.80 
Low 17.96 17.42 17.33 16.71 
Moderately Low 14.95 16.41 15.63 16.60 
Moderate 5.96 7.05 6.76 7.72 
Moderately High 2.92 3.49 3.46 4.21 
High 1.71 2.12 1.99 2.50 
Very High 4.39 5.88 4.78 6.46 

 
The classification scheme affects the spatial 

distributions, with a greater percentage (of) area 
befalling under classes of higher rates in cases 2a/ 2b 
compared to cases 1a/ 1b. The same applies when 
future trends are considered: cases 1b/ 2b compared to 
1a/ 2a. Overall, over 7 % of the total area ‘moves’ from 
the two lower soil loss classes (very low, low) to the rest 
of the classes, under the combined influence of future 
rainfall erosivity and UAV image classification land 
cover scheme.    

 

III. CONCLUSIONS 

In this paper, the soil loss by water erosion was 
estimated in the mountainous region of Metsovo. 
Towards this end, refined and adjusted input data from 
the UAV captures were utilized, enhancing the quality 
of the C-, LS-, and P- factors, while R-factor was 
parameterized based on present and future RCP 
scenarios from downscaled climatic models. The 
multifarious input data were processed, analyzed, and 
integrated into a GIS-based methodology. In this sense, 
this research study provides a methodology for both 
calculating soil loss by using refined data for the present 
conditions, and estimating future soil loss based on 
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potential changes of rainfall erosivity under different 
land cover classification schemes.  

Land cover classification influences soil loss rates: the 
enhanced values of the P-factor derived from UAV’s 
collected data yield higher soil loss values, and larger 
areas are ranked as more susceptible to water erosion. 
Existing land cover maps lead to the underestimation of 
soil loss rates of the area, while the systematic and 
adjusted image capturing, along with ground truthing, 
leads to the optimization of the generated land cover 
and soil loss maps. 

Changes due to the climate change-based rainfall 
erosivity are expected to ‘push’ areas of lower erosion 
rate classes towards much higher ones. Since these 
higher erosion classes are going to be ‘displaced’, 
mainly towards the upper convex hillslope landscape 
parts, serious concerns are raised regarding terrain 
deformation, land(scape) degradation and productivity 
loss. Support and other management practices need to 
be considered, if the Metsovo region is to preserve its 
landscape form and agricultural productive base.  
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