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ABSTRACT

Artificial Neural Networks (ANN) and deep learning currently provide rigorous solutions to many
engineering problems like in geotechnical engineering which can be used mostly in deformation prediction
and back analysis. In this paper, deformation monitoring data from measured absolute displacements in a
tunnel excavated at a complex geological system of the Pantokrator Limestone with fractured and loose
cataclastic gouge using the New Austrian Tunneling Method has been used to train an ANN for prediction
of the crown displacement along a tunnel. A Multi-layered Perceptron neural network has been developed
and used as a quick tool for deformation behavior prediction (crown displacements) of the tunnel using
the monitoring data measurements as target data and input training data from deformation parameters
like the overload factor, the support class, the stress reduction factor, the rock mass category, the
coefficient of lateral earth pressure and the overburden height. A detailed description of the developed

ANN is given and results are shown which indicate the suitability of the proposed method.

1.0 INTRODUCTION

The need to upgrade and further develop
transportation infrastructure (high-speed railway,
highway and urban transit lines) has led to the on-
going construction of large-diameter, long tunnels
under difficult conditions (Kavvadas, 2003). In
conventional tunneling, ‘geotechnical monitoring’ is
of fundamental importance as an instrument of
verifying the appropriateness of the operations
specified in the design and for calibrating the
intensity and sequence of those operations during
construction. It is also important for recording
tunnel behavior when it is in service, in order to
check the condition of the tunnel over time,
especially in relation to the geological behavior of
the rock mass and possible changes in the
hydrological conditions (fault zones, walled
sections, inflow, etc.) (Lunardi & Gatti, 2010).
Monitoring systems are designed to systematically
acquire information on the geological-
geomechanical conditions of a tunnel face and its
deformation response during excavation and when
in service.

The use of traditional manual data acquisition and
processing methods in most cases have not been
effective in preventing site failures due to the
inherent real time limitations (Li et.al. 2008). On the
other hand, due to modern day technology,
advanced tunnel instrumentation and monitoring
systems have been developed, providing digital
instruments, centralized databases for monitoring
data collection, automated real time updates and
geo-spatial distribution of information. With the
improvement in the amount and quality of data
available to the tunnel engineers, the challenge
remains at developing ways for its maximum
utilization. This paper introduces the application of
Artificial Intelligence Systems to develop a quick
tool which can be used on-site for the prediction of
tunnel crown settlement using Artificial Neural
Networks (ANN) offering a simplified but essential
way of utilizing big data available through the
modern information systems.

2.0 IMPORTANCE OF
MONITORING IN TUNNELS

DEFORMATION
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According to Kavvadas, (2003), monitoring of
ground deformations in tunneling is a principal
means for selecting the appropriate excavation and
support methods among those fore seen in the
design, for ensuring safety during tunnel
construction (including personnel safety inside the
tunnel and safety of structures located at ground
surface) and finally, for ensuring construction
quality management according to 1ISO9000.

In NATM tunnels, the observation method is
usually applied, this is a tunnel construction method
where continuous review of the behavior and
update of the design and adjustment of
construction method during construction, based on
actual conditions and observations, as required is
practiced. In this practice, the system behavior, the
system stability and system accuracy are combined
as design principles. During tunnel excavation,
ground deformations are monitored and the
measured values in the immediately previous
excavation steps are used for the selection of the
appropriate typical section to be used in the next
excavation step, by matching predicted and
observed deformations.

Ground deformation monitoring is extremely
useful in tunneling projects (probably much more
than in other geotechnical projects) for the
following reasons:

Facilitation of the observation method: Ground
deformations are the principal means of assessing
tunnel behavior, therefore, ground deformation
measurements are commonly used in the
anticipation of ground response (and thus in
decisions related to the applicable excavation and
support methods).

Back analysis for better parameters: Deformation
monitoring simplifies the process of assessment of
ground parameters through back analysis of already
excavated tunnel sections. The measurements
around a tunnel are used as a criterion for
acceptance of the ground parameters by matching
the observed and predicted deformations.

Risk planning and Safety: Monitoring results are
used in early warning systems during tunnel
excavations, which promotes safety against
incipient failures but also provides the ability for a
timely intervention to save the structure but mostly
to save the crew. The use of automated data
collection methods can improve yet more on the
speed and efficiency of risk mitigation systems in
tunnel engineering.

Final lining design: Deformation monitoring also
facilitates greatly in the design of the final lining of
the tunnel. Lining design is governed by the loads
exerted from the surrounding ground, which is
obtained from stress and load measurements, but
also clearly depicted in the deformation behavior of
the tunnel during and after excavation.

Detection of surface movement: Ground
monitoring is critically important in observation of
ground surface settlement induced due to tunneling
and as a control for mitigating excess movement of
fragile structures near the tunnel.

Long term creep monitoring: Deformation
monitoring can also be important in cases of excess
creep development in a tunnel. Tunnel wall
deformations can be used in assessing the condition
of the rock mass around the tunnel and the
evolution of the loads on the temporary support,
although in some cases, conditions are so adverse
that contingency measures do not succeed to avoid
the eventual collapse, but the measurements can
be used in redesigning the new approaches to re
activate the tunnel.

2.1 TUNNEL DEFORMATION MEASUREMENTS

The ground deformation measurement methods
applied during tunnel construction mainly depend on
the nature of the tunnel in question. The methods
applied in monitoring and design of urban/shallow
tunnels are different from those applied in
mountainous/deep tunnels. In mountain tunnels, the
main objective of deformation measurements during
construction is to ensure that ground pressures are
adequately controlled, i.e., there exists an adequate
margin of safety against collapse, including roof
collapse, bottom heave, failure of the excavation face,
yielding of the support system, etc.

Mountain tunnels: The adequate control of ground
pressures is the basic objective of the engineer during
construction in a mountain tunnel. Provision of a
balanced support system to the internal pressures
ensures a safe and economical structure, well adopted
to the heterogeneity of ground conditions.

In mountain tunnels the ground deconfinement
methods are applied before installation of supports
and the final lining is installed later on after the
stabilization of the tunnel creep deformations.
Therefore, in this case the deformation monitoring
measurements are;

e Concentrated inside the tunnel
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e Emphasis is put on the accuracy of the
convergence measurements

e  Minimum surface monitoring is required

e High demand for efficient and
measurement schedule

timely

e The degree of precision may not be excessive
as compared to the case of urban tunnels.
Urban tunnels: The construction and support
methods applied in urban tunnels promote a stiff
nature in the tunnel lining, so there is normally no
convergence expected in the interior of the tunnel.
Therefore, for deformation measurements in urban
tunnels emphasis is put on close and precise
measurements at the ground surface to ensure that
neither there is uplift nor settlement above the
tunnel. The characteristics of deformation
measurements for urban tunnels include:
e Installation of monitoring devices long before
excavation of a tunnel section.
e Very high precision is required
e Requirement of multi-system setting at
different heights to capture any possible
movement.
e Requirement of additional instrument set up
around the tunnel environment and on other
sensitive structures near the tunnel.

Despite the differences, every monitoring system
needs to be sophiscated, systematic and able to
provide a meaningful data to inform. Therefore, a
master plan for deformation control should have such
characteristics as:

e Thorough design of key parameters and
influencing factors.

e Ability to monitor and record the key
operation parameters in real time — advance
rate, penetration rates, slurry pressures etc.

e Real time monitoring of effects on the
surroundings —  confinement,  surface
settlement, ground water flow etc.

e Compactness, durability, compatible with
different types of sensors and monitoring
software, and continuity in gathering data in
real-time.

Deformation monitoring in tunneling projects is
performed with instruments installed or operated
either from the ground surface or from within the
tunnel. Instruments installed from within the tunnel
are necessarily put in place as the tunnel advances
and thus an appreciable portion of the actual
ground deformation is not recorded, as it has
occurred prior to the installation of the instrument.

Typically, the majority of ground deformation takes
place close to the tunnel face (from about one
tunnel diameter ahead of the face up to about 1.5
diameters behind the face). Thus, monitoring
instruments placed on the tunnel wall (e.g. optical
reflector targets) or installed in the ground from the
tunnel wall (e.g. borehole rod extensometers)
should be installed as early as possible, (Kavvadas,
2003).

However, an exception to this
deficiency are ground deformations along the tunnel
axis measured with sliding micrometers installed from
the tunnel face, thus rendering extremely useful
measurements for predictions of excavation
conditions ahead of the tunnel face (these
measurements are influenced mainly from the ground
conditions ahead of the tunnel face and thus are
useful in assessing tunnel behavior in the upcoming
excavation stages).

The major deformation monitoring measurements
usually performed in tunnel construction include:

unavoidable

e Measurements for wall convergence -
instruments normally positioned inside the
tunnel or drilled and installed inside the rock
mass with the scope of monitoring wall
convergence, crown settlement and face
deformation.

e Measurements for in the ground -
instruments placed vertically or horizontally
in the rock mass to monitor general
movement of the tunnel e.g. due to
landslides, ground settlement or upheave.

e Measurement of deformation at the ground
surface — mostly for urban and shallow
tunnels for monitoring surface settlement
and structural safety of buildings and utilities.

All the measured data is collected using advanced
automated systems, stored in a central database and
geospatially distributed for access by project
personnel wherever they may be. Fig. 3.1 shows the
architecture of an automated tunnel monitoring
system.
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Figure 1: Architecture of an automated tunnel monitoring system, (Source: Li et. al. 2008)

2.0 NEURAL NETWORKS

Neural networks and deep learning currently
provide the best solutions to many problems in image
recognition, speech recognition, and natural language
processing but also their application in geotechnical
engineering is growing rapidly. They are the most
commonly applied intelligent system in solving
geotechnical engineering problems. For example,
Bourmas, (2014) used a combination of ANN and
generic algorithms to assess the factor of safety of
column and chamber mine; Tsekouras, (2004) used
ANN to predict tunnel behavior using FEM analysis
results; You, (2013) used ANN in back analysis with
face mapping data to assess the optimal geotechnical
parameters to be used in FEM analyses.

2.1 ARTIFICIAL NEURAL NETWORKS (ANN)

ANN is a software implementation of the neuronal
structure of the human brain. Though the biology of a
human brain is so complex, it has been proved that it
contains neurons which are kind of like organic
switches. These can change their output state
depending on the strength of their electrical or
chemical input. A neural network is a hugely
interconnected network of neurons where the output
of any given neuron may be the input of thousands of
other neurons (Basheer and Hajmeer, 2000, Hagan,
2012). Learning in the human brain occurs by
repeatedly initiating certain neural connections over
others and this reinforces those connections. This

makes them more likely to produce a desired output
given a specified input. This learning involves a
feedback i.e. when a desired outcome occurs, the
neural connections causing that outcome become
strengthened. The ANN is comprised of three sections;

. The input layer
° The hidden layers and
. The output layer

Each layer contains a number of neurons, where
each neuron is connected to other neurons from the
previous or the next layer through a weight. When
each neuron receives an input signal (x,), it multiplies
it by the adjustable weight (w,), sums all the incoming
signals and a weighted bias product is added to the
sum. This combined input (/;) is then passed through
an activation transfer function (f(/})) to produce the
output element (y;). The neuron outputs are
transmitted to the output layer and then to the user’s
interface (Fig. 2). The network adjusts its weights on
the presentation of an input data set and uses a
learning rule to find a set of weights that will produce
the input/output mapping with the smallest possible
error, (Lee & Akutagawa, 2009).
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.
Figure 2: Relationship between biological and artificial
neurons (source: Basheer et.al, 2001)

ANN have the major advantage that they can be
trained and can learn using a series of input data from
a related problem. When the training is successfully
performed, it can then be validated using an
independent data set. The ANN uses the provided
data to adjust their weights in an attempt to capture
the relationship between the model input variables
and the corresponding outputs. A learning algorithm is
chosen as a learning function for tuning the values
which are to be taken by the weights and biases
during the analysis.

This paper uses the Backpropagation Neural
Networks (BPNN) which is popularly applied in
classification and prediction problems.

2.2 THE ANN MODEL

The purpose of building a ANN model is to create a
tool with which engineers can make quick predictions
of the tunnel deformation during tunnel construction
or even in design in case the training data is from an
already excavated tunnel but with similar technical
geological rock mass conditions.

In this paper, an Artificial Neural Network approach
for predicting crown displacement of a tunnel using a
set of training data based on indirect parameters from
Peck, (1969); Kavvadas, (2007) such as the overburden
factor N, and the stress reduction factor A, as inputs
and field measured displacement as target data is
performed. The factors mentioned above were
presented through various parameters, namely:

1. The overload factor N; which represents the
load overburden p, and the uniaxial
compressive strength of the rock mass.

The overload constant, N, = 2Po

Fcm

2. The modulus of elasticity E, - this represents
the stiffness and plastic behavior of the rock
mass
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3. The stress reduction factor A, - this is the
measure of the influence of the distance of
the placement supports on a tunnel of radius
R. (case where no plasticity occurs around
the tunnel during excavation.

2
A=1-0.75 [%]
=3

4. The support classification as a rating of the
pressure exerted by the support system on
the tunnel walls to counter deformation.

5. The rock classification as an in-field
classification for conditions as seen and
judged by the engineer

6. The overburden load burden P,

7. The coefficient of lateral pressure K, around
the tunnel environment

The inclusion of  convergence-confinement
parameters Ns and A is to create a means of
comparative use of both the finite element analysis
and ANN.

3. CASE STUDY

The data used to train the ANN is S1 tunnel which is
among the tunnels of Egnatia Highway and is found
between the villages of Kristallopigi and Psilorahis in
Hpeiro, 35km East of Igoumenitsa (Fig. 3).

Table 1: Factor and parameters that affect tunnel
deformation.

Deformation factor
Tunnel geometry
Ground|conditions

Tunnel parameters
Depth, Diameter, Shape
Cohesion

GSI,E,v,oci

Lateral earth pressures
Excavation step
Number of sequences
Face pressure (TBM)
Use of forepoles and /or spiles,
Lining, bolts,

Steel frames

Excavation conditions

Support conditions

During the construction of the S1 tunnel, uniquely
difficult geological formations were encountered. It
was a Pantokrator limestone rock mass of cataclastic
type with high flow characteristics, heavily weathered
and broken with interchanges from fully fragmented
rock to complete gravel and clay materials. During the
construction of the tunnel, it was discovered that the
deformation behavior designed basing on the in-situ
stress conditions and test drills was different from the
one encountered. This implied that the analytical
methods used in the design gave conservative support
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solution because it didn’t allow for the flow behavior
of the material. Therefore, the observation method
had to be emphasized, and it was proved that the
basic solution for safe tunnel excavation was an
aversive approach, to first of all hold and retain the
loose material and later to provide the support system
as per the analyses (Lefas et al., 2001).

For the construction of the neural network model,
the data obtained from the article by Georgiannou et.
al. (2007) as aforementioned was used as input data
for the neural network model (Table 1). The technical-
geological data including the rock mass class, the
tunnel depth, the support class and consequent
displacement for sections along the tunnels were
retrieved from the 1170m tunnel length. In this case
117 data sets of seven parameters are obtained.
Therefore, the total number of data elements
available for the neural network is 819 elements and
117 target elements. The data is processed through a
min-max normalization.

n of the S1 tunnels of the Egnatia Highway,
(Source: Google Earth).

Figure 3: Locatio

3.1 Neural network architecture

Using the Matlab Neural Network Tool a series of
network analyses are performed on a Multi-Layer
Perceptron to select the optimum number of layers,
the number of neurons in the hidden layer, the
learning algorithm, and consequently the optimum
training parameters (learning rate, momentum and
validation rate).

Table 2: Optimum training parameters obtained from the
test analysis set with the smallest MSE and highest R%.

NETWORK FUNCTION PARAMETER

TRANSFER FUNCTION TANSIG

TRAINING ALGORITHM BAYESIAN REGULATION

LEARNING ALGORITHM LEARNGDM

(gradient descent with
momentum function)

VALIDATION CHECKS 1000
No OF HIDDEN LAYERS 1
No OF INPUT ELEMENTS 7
No OF NEURONS 7
LEARNING RATE/ MOMENTUM 01 /04
MAX PERFORMANCE RATE 1E+20
No OF OUTPUT LAYERS 1

The quality and accuracy of the prediction is given in
terms of the Mean Square Error (MSE) and Regression
(R2).

N

1 -

MSE = QZW{ _x)3
&

 Yw-ma-h
R=_H :
JZ(A} -X:) JZ{}; -T:)?

Where X; is the target value (field monitoring
measurement), Y; is the predicted value and N is
number of input data pairs.

4. RESULTS

Learning: After successful training of the proposed
ANN model, it was proved that it can perfectly learn
with a good degree of regression and MSE as shown in
tables 3 and 4. The predictive model performed well
and confirmed that artificial neural networks can be
successfully used for prediction of tunnel behavior in
the study.

Table 3: Performance results of the final artificial neural
network tool.

R2 R2 R2 MSE MSE MSE
TRAINING | VALIDATION | TESTING | TRAINING | VALIDATION | TESTING

90,4% 96% 97.3% 24,7 30,68 34,67

Table 4: Root Mean Square Error of the training data in
mm.

RMSE TRAINING RMSE VALIDATION | RMSE TESTING

Smm 5.5mm 9mm
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DISPLACEMENT RE: ANN MODEL TRAINING
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Figure 4: Fitting of the predicted learning displacements
with the field measured crown displacements.

Prediction: The neural network model is established
for the prediction of crown displacement at a position
x(m) behind the tunnel face. If during construction,
based on previous geotechnical investigations, the
engineers can gather enriched information on the
geological and geotechnical characteristics of the
tunnel environment, then by calculating and
establishing the seven parameters used in training the
artificial neural network, a good prediction of the
displacement field can be obtained. The regression
plots of the predicted data and the measured data
give a satisfactory compliance with R2 = 0.87. The
results of the test are presented in Fig. 5 and 6.

R2 BETWEEN MEASURED AND ANN CROWN
DISPACEMENT

2 30,00
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Figure 5: correlation between the ANN predicted

displacements and the field measured crown displacement.

ANN PREDICTED CROWN DISPLACEMENT

=e=ANN OUTPUT =—==MEASURED DISPLACEMENT

Figure 6 Fitting of the predicted and the field measurement
crown displacements.

4.1 SENSITIVITY ANALYSIS OF THE ANN

The development of a deterministic or stochastic
model which is based on little or missing data
characterized by large error approaches, can lead to
predictions which do not relate with the empirical
evaluation or specialized knowledge (Johnson &
Winchern, 2007). Therefore, the sensitivity of the
neural network model should be examined/ checked
to see the effects of input data variations on the
training results. In the sensitivity checks, the
interrelationship and the influence of the data
elements are analyzed so as to identify the elements
which have the highest influence on the results. Seven
parametric analyses are performed by retraining the
neural network, each analysis with one of the input
element values zeroed. The performance results of
the analyses are summarized in Table 5. The
regression (training) of the target data with the
trained data from the Rock class, Ko, Support class
and A are minimally affected while for the elastic
modulus E, Ns and Overburden is reduced drastically.

Table 5: Performance results from the sensitivity analysis of
neural network.

ROCK | SUPPORT OVER ANN

CLASS CLASS E | Ko | Ns | BURDEN | A
Ruesting (%) 92,7 90,6 | 47| 93| 397 725 [ 813 | 973
MSE 29,2 173 [ 284 | 63,2 561 463 | 27| 247
RMSE{mm) 5,5 131| 52| 79| 75 68| 51| 42
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COMPARISON OF TRAINING RESULTS BETWEEN THE
SENSITIVITY ANALYSES AND THE FULL DATA ANN
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Figure 7: Comparison of training results for sensitivity due to
reduction to zero of input data.

4.0 CONCLUSIONS

The multi-layer perceptron  backpropagation
network used for the prediction of tunnel crown
displacement with ANN architecture comprised of a
sigmoid transfer function and Bayesian Regulation
learning algorithm, the architecture is 7-7-1, the
learning rate 0.1 and momentum increment 0.4.

The network is trained in a Matlab neural network
tool, with 108 input training sets and 10 test sets. The
regression R2 between the target (measured)
displacement and the predicted displacement is 87%,
the Mean Squared Error of 24.7 and the Root Mean
Squared Error 4.9mm.

Consequently, the artificial neural network model
created gave a truly reliable result leading to the
conclusion that artificial neural networks can be used
as a quick tool to predict tunnel behavior as a means
of ensuring tunnel safety, real time data analysis and
minimization of tunnel failure risks.
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