Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations

Metin SOYCAN and Arzu SOYCAN, Turkey

Key words: GPS, geoid, zenith angle, height

Abstract

SUMMARY In many surveying and engineering applications, orthometric heights are required. GPS derived heights refer to an ellipsoid and not to the geoid as orthometric heights. Ellipsoidal heights have geometric meanings in practical surveying, engineering, geophysics and in other applications, and they bear no physical meanings. To have ellipsoidal heights converted into orthometric heights, precise geoid heights are required. Several techniques can be used for determination of geoid heights. Most commonly used method for the determination of geoid is the combination of GPS data and leveling measurements. Despite the fact that geometric leveling is in general easy and practicable, it is a measurement method that is hard and uneconomic to apply particularly in mountainous, hilly and rugged areas. This study aims the use of conventional terrestrial zenith angle and GPS data instead of GPS-geometric leveling for the determination of precise geoid heights. The method has been probed into in consideration of the accuracy, practicability, measurement and evaluation criteria, and has been examined. In addition, geoid profiles that have been determined with the GPSZenith(GPS_ZEN.) angles measurement have been compared with TG-99A and IGNA geoid models to explore its consistency.

SUMMARY IN TURKISH

Bir çok ölçme ve mühendislik uygulaması ortometrik yükseklik bilgisini gerektirir. GPS ile elde edilen yükseklikler elipsoidal yüksekliklerdir. Elipsoidal yükseklikler, geometrik anlamlı büyüklükler olup fiziksel anlam içermezler. Elipsoidal yüksekliklerin ortometrik yüksekliklere çevrilmesi jeoit yüksekliği bilgisi gerektirmektedir. Jeoit yükseklikleri çeşitli tekniklerle belirlenebilir. En yaygın kullanılan jeoit yüksekliği belirleme tekniği GPS ve Geometrik Nivelman ölçülerinin kombinasyonudur. Geometrik nivelman oldukça basit ve kolay olmasına karşın, özellikle dağlık ve engebeli arazilerde, uygulaması zor ve ekonomik olmayan bir seçenektir. Bu çalışmada, hassas jeoit yüksekliklerinin GPS-Geometrik nivelman yerine GPS ve klasik yersel zenit açıları ölçmelerinin kullanılması ile belirlenmesi amaçlanmıştır. Yöntem uygulanabilirlik, doğruluk, ölçme ve değerlendirme kriterleri bakımından ele alınmış ve irdelenmiştir. Ayrıca, GPS-Zenit açı ölçmeleri ile bir geoid profili belirlenmiş ve mevcut TG99A ve IGNA jeoit modelleri ile uyuşumu incelenmiştir.

Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations

Metin SOYCAN and Arzu SOYCAN, Turkey

1. INTRODUCTION

Parallel to the development of satellite techniques and computation methods, GPS-Levelling method has become effectively usable for geodetic studies as well as for many specific areas. Particularly after the 1990s, there is increase in initiatives and studies aimed at obtaining geoid with "cm" accuracy. They differ in the determination of geoid heights, method, data used, practicability and accuracy. Frequently using methods in practice can be ordered as below;

- Global models, constituted from potential coefficients
- Use of vertical deflection, obtained from astro-geodetic measurement
- Gravimetric measurement,
- GPS-Geometric levelling,
- GPS-Precise trigonometric levelling,
- GPS-Astronomic observation,
- GPS- Gravimetric measurement,

Geoid surface is formed of components with various wave lengths depending on handling size. An area larger than 1000 km is expressed as long wave length geoid components, areas between $200-1000 \mathrm{~km}$ as medium wave length, areas between $100-20 \mathrm{~km}$ as short wave length and areas under 20 km as ultra-short wave length geoid components. In recent applications, approaches were adopted to determine long wave length effects utilizing the earth's potential coefficients, medium wave length effects utilizing gravity, and short and ultra-short wave length effects utilizing combined methods (Aksoy et all 1999, Deniz et all 2001, Ollikainen 1997, Schödlbauer et all 1992).

The most effective technique used in practice particularly for the determination of short and ultra-short wave length components is the GPS-leveling technique. With the GPS-leveling method, it is possible to determine geoid heights with $3-5 \mathrm{~cm}$ absolute accuracy. This accuracy is relatively much higher. Besides, this method is one that is accepted and applied by the whole world due to its measurement, ease of computation and its economic application (Ayan et all 2001, Featherstone et all 1998, IGNA 1999, IAG 1995, Zhan and Yong 1999, Park 1998, Rapp 1992, Forsberg 1990).

In GPS-leveling method, it is possible to determine ellipsoidal heights with sufficient accuracy using relative GPS measurements. As for the orthometric heights, they are widely determined by geometric leveling. Despite the fact that GPS-geometric leveling has high precision, it might not be practical and economical in mountainous, hilly and rugged areas. The simple and economic alternative method that might be used in such regions is the combination of GPS measurement with precise zenith angle measurements. This method is more flexible than GPS-geometric levelling and reaches the GPS-geometric leveling accuracy
by observing the zenith angle measurements carefully, precisely, simultaneously and reciprocally using a special surveying equipments by selecting the length of sight shorter than 500 m and precise relative static GPS observation (Aksoy et all, 1993, Kuntz and Schmitt 1986, Rüeger and Brunner 1981, Rüeger and Brunner 1982, Schödlbauer et all 1992, Tilk,Thies 1986, Soycan 2002, Soycan 2004).

2. MATHEMATICAL MODEL OF THE PROPOSED METHOD

In this method, it is necessary that observing the zenith angles by simultaneously and reciprocally, for elimination of some systematic errors like refraction and curvature of the earth, between two neighboring points. GPS-derived baseline vector components, between two neighboring points can be available by direct observation and processing of relevant baseline or computation of the baseline components from differences of cartesian coordinates of points. As depend on GPS-derived baseline components $\Delta \mathrm{X}_{\mathrm{ik}}, \Delta \mathrm{Y}_{\mathrm{ik}}, \Delta \mathrm{Z}_{\mathrm{ik}}$, ellipsoidal longitude and latitude $\varphi_{\mathrm{i}}, \lambda_{\mathrm{i}}$ ve $\varphi_{\mathrm{k}}, \lambda_{\mathrm{k}}$. Equation (1) can be written for the $\zeta_{\mathrm{ik}}, \zeta_{\mathrm{ki}}$ ellipsoidal zenith angles, and the slope distance between the points P_{i} and P_{k} (Schödlbauer et all 1992).

$$
\begin{gather*}
\zeta_{\mathrm{ik}}=\arccos \left(\left(\cos \varphi_{\mathrm{i}}\left(\cos \lambda_{\mathrm{i}} \Delta \mathrm{X}_{\mathrm{ik}}+\sin \lambda_{\mathrm{ik}} \Delta \mathrm{Y}_{\mathrm{ik}}\right)+\sin \varphi_{\mathrm{i}} \Delta \mathrm{Z}_{\mathrm{ik}}\right) / \mathrm{D}_{\mathrm{ik}}\right) \\
\zeta_{\mathrm{ki}}=\arccos \left(\left(\cos \varphi_{\mathrm{k}}\left(\cos \lambda_{\mathrm{k}} \Delta \mathrm{X}_{\mathrm{ki}}+\sin \lambda_{\mathrm{ki}} \Delta \mathrm{Y}_{\mathrm{ki}}\right)+\sin \varphi_{\mathrm{k}} \Delta \mathrm{Z}_{\mathrm{ki}}\right) / \mathrm{D}_{\mathrm{ik}}\right) \tag{1}\\
\mathrm{D}_{\mathrm{ik}}=\sqrt{\left(\Delta \mathrm{X}_{\mathrm{ik}}^{2}+\Delta \mathrm{Y}_{\mathrm{ik}}^{2}+\Delta \mathrm{Z}_{\mathrm{ik}}^{2}\right)}
\end{gather*}
$$

Figure.1. Ellipsoidal zenith angle and vertical deflections(Schödlbauer et all 1992)
Averaging the reciprocal ellipsoidal zenith angles $\zeta_{\mathrm{ik}}, \zeta_{\mathrm{ki}}$ as well as $\varphi_{\mathrm{i}}, \lambda_{\mathrm{i}}$ ve $\varphi_{\mathrm{k}}, \lambda_{\mathrm{k}}$, yields the ellipsoidal zenith angle ζ_{0} in the middle of the line $\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{k}}$;

$$
\begin{gather*}
\zeta_{0}=\arccos \left(\left(\cos \varphi_{0}\left(\cos \lambda_{0} \Delta \mathrm{X}_{\mathrm{ik}}+\sin \lambda_{0} \Delta \mathrm{Y}_{\mathrm{ik}}\right)+\sin \varphi_{0} \Delta \mathrm{Z}_{\mathrm{ik}}\right) / \mathrm{D}_{\mathrm{ik}}\right) \\
\varphi_{0}=\frac{\varphi_{\mathrm{i}}+\varphi_{\mathrm{k}}}{2}, \lambda_{0}=\frac{\lambda_{\mathrm{i}}+\lambda_{\mathrm{k}}}{2} \tag{3}
\end{gather*}
$$

Z_{ik} and Z_{ki} are simultaneously and reciprocally observed zenith angles by conventional terrestrial techniques. Similarly averaging the Z_{ik} and Z_{k}, the refraction free zenith angle Z_{0} can be obtained in the middle of the line $P_{i}-P_{k}($ Schödlbauer et all 1992).

$$
\begin{equation*}
\mathrm{Z}_{0}=\frac{\left(\mathrm{Z}_{\mathrm{ik}}+200^{\mathrm{g}}-\mathrm{Z}_{\mathrm{ki}}\right)}{2} \tag{4}
\end{equation*}
$$

Thus, is the deflection of the vertical ε_{0} in the azimuth $\alpha_{i k}$ of the profile $\mathrm{P}_{\mathrm{i}}-\mathrm{P}_{\mathrm{k}}$ can be available.

$$
\begin{equation*}
\varepsilon_{0}=Z_{0}-\zeta_{0} \tag{5}
\end{equation*}
$$

Geoid height difference $\Delta \mathrm{N}_{\mathrm{ik}}$ between P_{i} and P_{k} can be written as below;

$$
\begin{equation*}
\Delta \mathrm{N}_{\mathrm{ik}}=\mathrm{D}_{\mathrm{ik}} \sin \mathrm{Z}_{0} \sin \varepsilon_{\mathrm{ik}} \tag{6}
\end{equation*}
$$

3. APPLICATION AND EVALUATION OF THE MODEL IN A TEST AREA

As for the test area, it has been chosen a profile between Beykoz and Riva, which is more rugged and hilly area. The length of this profile is about 16 km , and its geoid height difference has been calculated as 55 cm from our initial study. Geoid height change in 1 km is about 3.5 cm . Profile points have been chosen in places where it is possible to determine land topography in detail, and where GPS, zenith angles and levelling measurements may be made easily. The profile has been planned as 87 points on a route of about consecutive 16 kilometers seeing each other extending along the Beykoz-Riva link highway. There are 6 IGNA reference points along the profile with known coordinates in the ITRF-94 (International Referance Frame-1994) and ED-50 (Europan Datum 1950) system.

Figure.2. View of the profiles in horizontal plane

[^0]IGNA has been formed with 34 primary points that have been chosen in addition to 5 TUTGA (Turkish National Fundamental GPS Network), 8 TUTNA (Turkish National Control Network) point, 7 Istanbul Metropolitan Geodetic Network points in connection with the TUTGA and the TUTNA, with side lengths of $15-20 \mathrm{~km}$, covering the municipal borders of city of Istanbul. Total number of points is formed of 650 benchmark measured in connection with the primary network. IGNA network has been designed, measured and evaluated in two parts, being primary network points and densification network (Ayan et all 2001, IGNA 1999).

In test area, for equipment with sufficient precision to allow the measurement of zenith angle measurements simultaneously and reciprocally, special target signs mounted on Wild-T2 theodolites' objective lens. In both theodolites, a red tape pasted on the objective lens in ' + ' form has been used as target sign. The part at the center of the sign is cut to allow the theodolites to see each other and the center of target will be made clear. Therefore, a target mark has been formed that is able to achieve the condition of simultaneously and reciprocally measurement of zenith angles, that is formed easily and economically, that is ideal for observation, and that will minimize targeting error. By using this equipment two full series zenith angles are observed between adjacents points on the geoid profile.

Figure.3. Observation of reciprocally and simultaneously zenith angles by Wild-T2 theodolite with special target

The study also made use of three Z-Surveyor GPS receivers made by Ashtech firm with geodetic antennas, Wild-NAK2 levelling instrument, a special mira partitioned in mm , Golden software Surfer, Excel and Matlab computation software, Winprism and Bernese GPS processing software.

Each of the 87 points chosen along the profile has been measured from at least two IGNA points with 30 -minute sessions using the static method. From 6 IGNA points, a total of 174 baseline vectors have been measured and processed.

Table.1. Surveying configuration of GPS network

| Survey mode: Static observation with 2 referance on IGNA points, third receiver rover on the points | | |
| :---: | :---: | :---: | :---: |
| of the profile | | |\(\left.| \begin{array}{c}Number of loop

for each campaign\end{array}\right]\)

To determine the base vector measurement accuracy and to subject the processed baseline vectors to quality control, 174 baseline vector lengths measured between the points on IGNA Points and the profile and standard deviations have been examined. As a result of evaluations, $5.8 \mathrm{~mm}+2 \mathrm{ppm}$ equation has been obtained as baseline vector measurement accuracy.After making an outlier search in the GPS network, baseline vectors have been adjusted taking the coordinates of the 6 IGNA point as fixed. Summary information is given about adjustment results in Table 2. One can say that the accuracies of ellipsoidal heights obtained accordingly are about 9 mm .

Table.2. Processing and adjustment informations of GPS network

GPS Network informations	
Number of fixed points (XYZ fixed)	6
Number of total points (k)	93
Number of baseline (q)	174
Number of baseline components ($\mathrm{n}=3 \mathrm{q}$)	522
Standard deviation of baseline components	
Distance of baseline (m)	Max. $=0.017$, Min. $=0.004$, RMS $=0.010$
$\Delta \mathrm{X}$ Components (m)	Max. $=0.010$, Min. $=0.001$, RMS $=0.006$
$\Delta \mathrm{Y}$ Components (m)	Max. $=0.012$, Min. $=0.001$, RMS $=0.005$
$\Delta \mathrm{Z}$ Components (m)	Max. $=0.011$, Min. $=0.002$, RMS $=0.006$
Adjustment informations	
Number of observation ($\mathrm{n}+\mathrm{f}$)	522
Number of parameters ($\mathrm{u}=3 \mathrm{k}$)	261
Degree of freedom ($\mathrm{n}+\mathrm{f}-\mathrm{u}$)	261
Unit weighted variance	7.21
Sum of the variance (${ }^{\text {T }} \mathrm{PV}$)	1880.00
Residuals	
V (radial) residuals (m)	Max. $=0.039$, Min. $=0.001$, RMS=0.015
$\mathrm{V}_{\Delta X}$ residuals (m)	Max. $=0.027$, Min. $=-0.024$,RMS $=0.009$
$\mathrm{V}_{\Delta Y}$ residuals (m)	Max. $=0.039$, Min. $=-0.027, \mathrm{RMS}=0.009$
$\mathrm{V}_{\Delta Z}$ residuals (m)	Max. $=0.023$, Min. $=-0.018$,RMS $=0.008$
Coordinate errors	
Latitude errors (m)	Max. $=0.014$, Min. $=0.003$, RMS $=0.009$
Longtitude errors (m)	Max. $=0.011$, Min. $=0.004$, RMS $=0.007$
Elipsoidal Height errors (m)	Max. $=0.013$, Min. $=0.005, \mathrm{RMS}=0.009$

Table.3. Geoid height computation between point 1 to 11

NO	$\mathrm{D}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{Z}_{0(\mathrm{grad})}$	$\xi_{0(\mathrm{grad})}$	$\Delta \mathrm{N}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{N}(\mathrm{m})$	$\mathrm{N}_{\mathrm{iGNA}} \cdot(\mathrm{m})$	$\mathrm{N}_{\mathrm{TG} 99 \mathrm{~A}} \cdot(\mathrm{~m})$	$\mathrm{N}^{\prime}-\mathrm{N}_{\mathrm{iGNA}}$	$\mathrm{N}-\mathrm{N}_{\mathrm{TG} 99 \mathrm{~A}}$
34699					36,685				
1	1772,850	97,09690	97,10242	$-0,154$	36,530	36,544	36,589	$-0,014$	$-0,059$
2	129,446	100,40079	100,40395	$-0,006$	36,521	36,541	36,587	$-0,020$	$-0,066$
3	98,695	101,17529	101,18245	$-0,011$	36,509	36,539	36,586	$-0,030$	$-0,077$
4	102,280	100,81475	100,81261	0,003	36,510	36,538	36,584	$-0,028$	$-0,074$
5	159,527	100,87036	100,86897	0,004	36,512	36,539	36,582	$-0,027$	$-0,070$
6	83,700	100,51793	100,51082	0,009	36,519	36,538	36,581	$-0,019$	$-0,062$
7	202,336	100,38319	100,38277	0,001	36,519	36,531	36,578	$-0,012$	$-0,059$
8	135,025	101,15139	101,14384	0,016	36,533	36,527	36,575	0,006	$-0,042$
9	191,992	101,05678	101,05688	0,000	36,531	36,522	36,570	0,009	$-0,039$
11	385,912	100,91275	100,91210	0,004	36,533	36,517	36,562	0,016	$-0,029$
34694	588,863	109,82263	109,81631	0,059	36,589				
				$\mathbf{- 0 , 0 7 5}$	$\mathbf{- 0 , 0 9 6}$				

Table.4. Geoid height computation between point 13 to 45

NO	$\mathrm{D}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{Z}_{0 \text { (grad) }}$	$\xi_{0(\mathrm{grad})}$	$\Delta \mathrm{N}_{\mathrm{ik}}(\mathrm{m})$	N(m)	$\mathrm{N}_{\mathrm{iGNA}}$.(m)	$\mathrm{N}_{\text {TG99A. }}$.(m)	$\mathrm{N}-\mathrm{N}_{\text {iGNA }}$	$\mathrm{N}-\mathrm{N}_{\text {TG999 }}$
34694					36,589				
13	443,654	88,37423	88,38627	-0,084	36,507	36,506	36,550	0,001	-0,043
14	56,319	100,63299	100,63355	-0,001	36,507	36,505	36,548	0,002	-0,041
15	52,040	99,71982	99,70575	0,012	36,519	36,503	36,547	0,016	-0,028
16	70,479	101,64229	101,65178	-0,011	36,509	36,501	36,545	0,008	-0,036
17	106,704	100,91522	100,91343	0,003	36,513	36,500	36,543	0,013	-0,030
18	129,075	101,69880	101,69337	0,011	36,524	36,498	36,540	0,026	-0,016
19	176,920	101,76014	101,76158	-0,004	36,521	36,493	36,536	0,028	-0,015
20	204,038	101,77429	101,77319	0,004	36,525	36,486	36,531	0,039	-0,006
21	79,400	102,20774	102,20975	-0,003	36,523	36,484	36,530	0,039	-0,007
22	136,634	102,63788	102,62925	0,019	36,542	36,479	36,527	0,063	0,015
23	131,973	103,04354	103,05127	-0,016	36,526	36,477	36,524	0,049	0,002
24	179,326	103,58850	103,58690	0,005	36,531	36,474	36,520	0,057	0,011
25	198,829	103,36251	103,35834	0,013	36,545	36,471	36,516	0,074	0,029
26	178,892	106,31311	106,31740	-0,012	36,533	36,470	36,513	0,063	0,020
27	168,704	107,60292	107,60425	-0,004	36,530	36,469	36,510	0,061	0,020
28	152,216	106,45937	106,45748	0,005	36,535	36,471	36,511	0,064	0,024
29	147,608	108,50179	108,50288	-0,003	36,534	36,469	36,507	0,065	0,027
30	258,052	94,71695	94,71620	0,003	36,537	36,460	36,501	0,077	0,036
31	164,152	97,37326	97,37617	-0,008	36,530	36,457	36,497	0,073	0,033
32	173,557	97,07842	97,07824	0,001	36,531	36,457	36,494	0,074	0,037
33	80,031	96,54513	96,53995	0,007	36,538	36,455	36,492	0,083	0,046
34	109,133	98,21470	98,21936	-0,008	36,531	36,455	36,490	0,076	0,041
35	95,105	95,41541	95,42346	-0,012	36,519	36,453	36,487	0,066	0,032
36	67,068	96,76935	96,76459	0,005	36,525	36,453	36,486	0,072	0,039
37	169,671	97,25671	97,25314	0,010	36,535	36,450	36,481	0,085	0,054
38	153,416	98,08337	98,09437	-0,027	36,509	36,445	36,476	0,064	0,033
39	174,305	98,19437	98,19565	-0,004	36,506	36,442	36,470	0,064	0,036
40	184,430	98,61982	98,62862	-0,026	36,481	36,437	36,464	0,044	0,017
41	206,495	98,32787	98,32586	0,007	36,488	36,430	36,456	0,058	0,032
42	136,322	98,92349	98,93353	-0,022	36,467	36,426	36,452	0,041	0,015
43	111,381	99,48040	99,47583	0,008	36,475	36,422	36,449	0,053	0,026
44	136,079	98,22432	98,22876	-0,010	36,466	36,418	36,445	0,048	0,021
45	111,318	98,26119	98,27978	-0,033	36,434	36,414	36,441	0,020	-0,007
34689	844,969	105,95807	105,96216	-0,054	36,381				
				-0,226	-0,208				

TS 33 - Vertical Reference Frame
Metin Soycan and Arzu Soycan
TS33.6 Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations
From Pharaohs to Geoinformatics
FIG Working Week 2005 and GSDI-8
Cairo, Egypt April 16-21, 2005

Table.5. Geoid height computation between point 46 to 74

NO	$\mathrm{D}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{Z}_{0(\mathrm{grad})}$	$\xi_{0(\mathrm{grad})}$	$\Delta \mathrm{N}_{\mathrm{ik}}(\mathrm{m})$	N(m)	$\mathrm{N}_{\text {iGNA }}$.(m)	$\mathrm{N}_{\text {TG99A. }}$.(m)	N-N ${ }_{\text {iGNA }}$	$\mathrm{N}-\mathrm{N}_{\text {TG99A }}$
34689					36,381				
46	801,034	93,69239	93,68823	0,052	36,432	36,409	36,436	0,023	-0,004
47	136,920	98,61707	98,61928	-0,005	36,426	36,405	36,431	0,021	-0,005
48	140,894	99,89649	99,89572	0,002	36,427	36,400	36,428	0,027	-0,001
49	229,245	98,53384	98,53752	-0,013	36,413	36,392	36,423	0,021	-0,010
50	151,877	97,53884	97,53628	0,006	36,418	36,389	36,423	0,029	-0,005
51	69,279	99,80239	99,82054	-0,020	36,397	36,387	36,422	0,010	-0,025
52	82,017	98,96524	98,95398	0,015	36,411	36,384	36,419	0,027	-0,008
53	110,014	100,41603	100,41227	0,007	36,416	36,380	36,415	0,036	0,001
54	92,715	98,96377	98,96446	-0,001	36,415	36,377	36,412	0,038	0,003
55	86,018	97,55258	97,54370	0,012	36,426	36,374	36,411	0,052	0,015
56	80,060	94,17833	94,18791	-0,012	36,413	36,371	36,408	0,042	0,005
57	129,971	94,84490	94,84368	0,003	36,414	36,367	36,405	0,047	0,009
58	159,486	99,93330	99,94089	-0,019	36,394	36,361	36,400	0,033	-0,006
59	197,644	101,42249	101,41637	0,019	36,412	36,354	36,394	0,058	0,018
60	169,571	98,26939	98,27352	-0,011	36,400	36,348	36,388	0,052	0,012
61	148,559	96,53102	96,53617	-0,012	36,387	36,344	36,383	0,043	0,004
62	178,976	98,99614	99,00005	-0,011	36,375	36,346	36,381	0,029	-0,006
63	256,480	99,11753	99,12324	-0,023	36,352	36,344	36,375	0,008	-0,023
64	219,461	98,18699	98,19671	-0,034	36,317	36,341	36,369	-0,024	-0,052
65	167,143	99,86932	99,86532	0,011	36,327	36,338	36,364	-0,011	-0,037
66	89,456	97,93152	97,93971	-0,012	36,314	36,335	36,361	-0,021	-0,047
67	173,088	99,09735	99,09882	-0,004	36,309	36,329	36,357	-0,020	-0,048
68	155,177	99,31360	99,30683	0,017	36,325	36,324	36,354	0,001	-0,029
69	203,807	99,91344	99,91750	-0,013	36,311	36,317	36,347	-0,006	-0,036
70	244,706	100,18624	100,18390	0,009	36,319	36,309	36,334	0,010	-0,015
72	125,175	102,67387	102,68150	-0,015	36,303	36,310	36,337	-0,007	-0,034
74	152,171	97,14287	97,13659	0,015	36,317	36,305	36,332	0,012	-0,015
34686	627,008	105,51981	105,52348	-0,036	36,280				
				-0,074	-0,101				

Table.6. Geoid height computation between point 75 to 89

NO	$\mathrm{D}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{Z}_{0(\mathrm{grad})}$	$\xi_{0(\mathrm{grad})}$	$\mathrm{N}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{N}(\mathrm{m})$	$\mathrm{N}_{\mathrm{iGNA}} .(\mathrm{m})$	$\mathrm{N}_{\mathrm{TG} 99 \mathrm{~A}} \cdot(\mathrm{~m})$	$\mathrm{N}^{\prime} \mathrm{N}_{\mathrm{iGNA}}$	$\mathrm{N}-\mathrm{N}_{\mathrm{TG} 99 \mathrm{~A}}$
34686					36,280				
75	725,172	95,43349	95,43195	0,018	36,299	36,306	36,331	$-0,007$	$-0,032$
77	152,889	98,10925	98,11925	$-0,024$	36,277	36,307	36,329	$-0,030$	$-0,052$
78	198,968	98,28797	98,28493	0,010	36,288	36,300	36,324	$-0,012$	$-0,036$
79	141,507	99,84790	99,85443	$-0,015$	36,275	36,295	36,320	$-0,020$	$-0,045$
81	430,645	99,20891	99,21209	$-0,022$	36,255	36,279	36,308	$-0,024$	$-0,053$
82	258,094	100,05472	100,05411	0,003	36,259	36,269	36,299	$-0,010$	$-0,040$
83	206,992	99,92953	99,92753	0,007	36,267	36,262	36,291	0,005	$-0,024$
87	817,938	100,29861	100,30013	$-0,020$	36,249	36,234	36,262	0,015	$-0,013$
88	303,344	99,68264	99,68096	0,008	36,258	36,223	36,253	0,035	0,005
89	565,728	100,36130	100,36147	$-0,002$	36,258	36,203	36,237	0,055	0,021
34682	457,845	105,10638	105,11872	$-0,089$	36,171				
				$\mathbf{- 0 , 1 2 5}$	$\mathbf{- 0 , 1 0 9}$				

TS 33 - Vertical Reference Frame

Metin Soycan and Arzu Soycan
TS33.6 Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations
From Pharaohs to Geoinformatics
FIG Working Week 2005 and GSDI-8
Cairo, Egypt April 16-21, 2005

Table.7. Geoid height computation between point 91 to 100

NO	$\mathrm{D}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{Z}_{0(\mathrm{grad})}$	$\xi_{0(\mathrm{grad})}$	$\mathrm{N}_{\mathrm{ik}}(\mathrm{m})$	$\mathrm{N}(\mathrm{m})$	$\mathrm{N}_{\mathrm{iGNA}} \cdot(\mathrm{m})$	$\mathrm{N}_{\mathrm{TG} 99 \mathrm{~A}} \cdot(\mathrm{~m})$	$\mathrm{N}-\mathrm{N}_{\mathrm{iGNA}}$	$\mathrm{N}-\mathrm{N}_{\mathrm{TG} 99 \mathrm{~A}}$
34682					36,171				
91	202,167	101,25995	101,23491	0,080	36,248	36,182	36,224	0,066	0,024
92	176,266	98,16136	98,16045	0,003	36,249	36,179	36,223	0,070	0,026
93	298,854	95,38018	95,38392	$-0,018$	36,229	36,172	36,220	0,057	0,009
94	442,416	96,95554	96,95641	$-0,006$	36,221	36,159	36,214	0,062	0,007
95	329,252	99,36015	99,36585	$-0,030$	36,189	36,149	36,207	0,040	$-0,018$
96	269,332	100,55851	100,56466	$-0,026$	36,161	36,139	36,201	0,022	$-0,040$
100	356,534	100,21013	100,22048	$-0,058$	36,101	36,127	36,194	$-0,026$	$-0,093$
34082	577,755	103,76598	103,76889	$-0,026$	36,072				
				$\mathbf{- 0 , 0 8 1}$	$\mathbf{- 0 , 0 9 9}$				

From Table 3 to Table 7 show geoid heights computation of profile points. Bold numeral type is geoid height clousere for each profile line and italic numeral type is known geoid height of IGNA reference points.

4. COMPARATION OF PROFILE WITH IGNA AND TG-99A MODELS

The 87-point 16 km GPS_GL and GPS_PTL geoid profile have been compared with the IGNA and TG-99A geoid models summarized below.

IGNA geoid model were utilized to determine "cm" accuracy geoid by GPS and GL data, within the borders of Istanbul municipality, 458 geoid base points covering the said region has been taken in an area of $65 \times 160 \mathrm{~km}$. IGNA geoid model has been determined using the multi parameter regression method for practical use. Geoid heights, calculated from GPS and GL measurements, are modeled as two-parameter surface polynomial, which is in fifth order. The accuracy of the model is tested via independent levelling and GPS measurements different parts of Istanbul. As a result of studies made for the accuracy of the model, model consistency has been found to be about $\pm 4 \mathrm{~cm}$. As for relative accuracy, it may be obtained higher than this value (Ayan et all 2001, Deniz et all 2001, IGNA 1999).

As for the TG-99A geoid model, it has been computed at the $3^{\prime} \times 3^{\prime}$ grid frequency through modeling of differences on GPS-Levelling points of long wavelength effects in the Turkish Gravimetric Geoid (TG-91) computed in 1991. GPS coordinates (φ, λ, h) and orthometric heights (H) of 197 points and the $3^{\prime} \times 3^{\prime}$ grid value used in TG-91 has been used. GPS-Levelling geoid heights were obtained from the difference between the GPS ellipsoidal heights and the orthometric height values. As for the gravimetric geoid heights belonging to the same points, they have been determined using the minimum curvature interpolation method with 6 parameters trend surface. As a basic data, the study used the difference between gravimetric geoid height and GPS-Levelling geoid height. During the evaluation stage, 1 point was removed due to inconsistency, and 196 points were used. The inner accuracy of model is achieved in $\pm 5 \mathrm{~cm}$ from the difference between interpolated and measured geoid heights for 196 points. Furthermore, the accuracy of the model is tested in 122 independent points throughout Turkey, and the outer geoid height accuracy has been found to be $\pm 10 \mathrm{~cm}$. It is possible to obtain values with relatively higher accuracy values (TUTGA-99A, 1999).

[^1]

	(GPS_ZEN)-(TG-99A)	(GPS_ZEN.)-(IGNA)
Absolute value of the Minimum difference (m)	0.001	0.001
Absolute value of the Maximum difference (m)	0.093	0.085
Avarege of absolute difference (m)	0.028	0.036
Standart deviataion of average of difference (m)	0.020	0.023
RMS value of the difference (m)	0.034	0.043

Figure.7. Comparation of the (GPS_ZEN) with IGNA and TG-99A model

Differences obtained as a result of comparison of the geoid heights obtained using the GPS_GL and GPS_PTL methods with the geoid heights interpolated from TG-99A and IGNA geoid model are given in Figure 7.

5. CONCLUSION

In length of sight shorter than 500 meters, one may accept that the effect of deviation of verticle on height is negligibly small. In this regard, to determine geoid heights by using proposed models zenith angle measurements are made with short lengths of sight.
The most important remaining effect is the refraction effect, by choosing the length of sights between points short, and by making simultaneous and reciprocal zenith angle observations by using special equipment in favorable meteorological conditions, this effect may be reduced to a great extent.
When appropriate measurement and processing strategies are applied with the GPS, it is possible to determine ellipsoidal heights with an accuracy of about 9 mm (Max. 13mm).
Consistency of geoid profile determined with the GPS_ZEN. with the IGNA geoid is 43 mm (Max. 85 mm , Min. 1mm), while its consistency with the TG-99A geoid is 34 mm (Max. 93 mm , Min. 1 mm).
In GPS-levelling method; it is possible to determine ellipsoidal heights with sufficient accuracy using relative GPS measurements. As for the orthometric heights, they are widely determined by GL. Despite the fact that GL has high precision, it might not be practical and economical in mountainous, hilly and rugged areas. The first alternative method that might be used in such regions is the PTL. PTL method is more flexible than GL and reaches the GL

[^2]accuracy by making the zenith angle measurements carefully, simultaneously and reciprocally using a special equipments and by selecting the length of sight shorter than 500 m

REFERENCES

1. Aksoy, A., Ayan, T., Çelik, R.N., Demirel, H., Deniz R. and Gürkan, O., 1999. Güncel Gelişmeler Işığında Mekansal Bilgi Sistemleri İçin Jeodezik Altyapı ve Problemler (Geodetic Substracture and Problems for Environmental Information Systems at the Current Developments) Harita Mühendisliğinde 50.yıl Konferansı (50. year Conferance for Surveying Engineering), Istanbul.
2. Aksoy, A., Franke, P., Yalın, D. and Witte B., 1993. Yükseklik değişimlerinin hassas belirlenmesi için trigonometrik nivelmanın geliştirilmiş bir yöntemi. (An improved method of trigonometric levelling for determination of height changings), Prof. Dr. H.Wolf Jeodezi Sempozyumu (Prof. Dr. H.Wolf Geodesy Syposium), Istanbul.
3. Ayan, T., Özlüdemir, T., Akyılmaz, O., Arslan, E. and Denli, H.H., 2001. Geodetic Network Densification in Istanbul-IGNA. Fourth Turkish - German Joint Geodetic Days, Berlin, Vol.II: 515-520
4. Deniz, R., Akyılmaz, O., Erol, S., Özöner, B., and Denli, H., 2001. Precise Geoid Determination Using GPS \& Levelling Measurement. Fourth Turkish - German Joint Geodetic Days, Berlin, Vol.II: 591-596
5. Featherstone, W.E., Dentith, M.C. and Kirby, J.F., 1998. Strategies for the Accurate Determination of Orthometric Heights from GPS. Survey Rewiew [34], (267): 278-296
6. Forsberg, R. and Madsen, F., 1990. High Precision Geoid Heights for GPS Levelling. GPS-90 Symposium, Ottawa.
7. IAG (International Association of Geodesy). 1995. New Geoids in the world. Bulletin d'information N.77. Iges Bulletin N. 4 Special Issue.
8. IGNA (Istanbul GPS Network). 1999. Technical report. I.T.U (Istanbul Technical University) Geodesy Division.
9. Kuntz, E. and Schmitt, G., 1986. Precise Height Determination by Simultaneous Zenith Distances. Determination of Heights and Heights Changes (Contributions to the Symposium on Height Determination and Recent Vertical Movements in Western Europe Held at the University of Honnover, September 15-19 1986).
10. Ollikainen, M., 1997. Determination of Orthometric Heights Using GPS Levelling. Publications of the Finnish Geodetic Institute. Kirkkonummi.
11. Park, W., 1998. Accuracy of GPS-Derived Levelling Section Orthometric Height Difference in San Diego County, California. Surveying and Land Information System, [58] (1): 31-46
12. Rapp, R.H., 1992. Computation and Accuracy of Global Geoid Undulation Models. 6. International Geodetic Symposium on Satellite Positioning, Ohio.
13. Rüeger, J.M., and Brunner, F.K., 1981. Practical Results of EDM-Height Traversing.

TS 33 - Vertical Reference Frame 11/12
Metin Soycan and Arzu Soycan
TS33.6 Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations

The Australian Surveyor [6]: 363-372
14. Rüeger, J.M., and Brunner F.K., 1982. EDM-Height Traversing versus geometric levelling. The Canadian Surveyor [36]: 69-88
15. Schödlbauer, A., Krack, K., Scherer, B. And Widmann R., 1992. GPS Levelling in High Precision Engineering Surveys. 6. International Geodetic Symposium on Satellite Positioning, Ohio.
16. Schödlbauer, A., Glasmacher, H., Heister, H., Krack, K. and Scherer B., 1992. Height Transfer Across the Storebaelt (Eastern Channel) using geometric levelling, Trigonometric Heighting and Astronomic Methods in Combination with GPS (GPS Levelling). First International Symposium on Applications of Geodesy to Engineering, Stuttgart.
17. Soycan, M. 2002. Jeoit Yüksekliklerinin GPS ve Hassas Trigonometrik Nivelman Ölçmeleri İle Belirlenmesi (Determination of Geoid Heights By GPS and Precise Trigonometrical Levelling), Doktora Tezi(Phd Thesis), YTU Fen Bilimleri Enstitüsü, ISTANBUL
18. Soycan, M. 2002. Determination of Geoid Heights By GPS and Precise Trigonometrical Levelling, Survey Review (Accepted March 2004, not published yet)
19. Tilk, Thies, U., 1986. Theoretical Aspects of Trigonometric Levelling. Determination of Heights and Heights Changes (Contributions to the Symposium on Height Determination and Recent Vertical Movements in Western Europe Held at the University of Honnover, September 15-19 1986).
20. TUTGA-99A (Turkish National Fundamental GPS Network-1999A). General Command of Mapping. Harita Dergisi. Special Issue. No: 16
21. Zhan, J, Y. and Yong Q.C., 1999. Determination of Local Geoid with Geometric Method: Case Study. Journal of Surveying Engineering [125] (3): 136-146

CONTACTS

Metin Soycan, Arzu Soycan
Yıldız Technical University Civil Engineering Faculty
Geodesy and Photogrametry Engineering Division
ISTANBUL
(TURKEY)
Tel. +902122597070
Fax +902610767
Email: soycan@yildiz.edu.tr,
topbas@yildiz.edu.tr

[^3]
[^0]: TS 33 - Vertical Reference Frame
 Metin Soycan and Arzu Soycan
 TS33.6 Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations

[^1]: TS 33 - Vertical Reference Frame
 9/12
 Metin Soycan and Arzu Soycan
 TS33.6 Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations

[^2]: TS 33 - Vertical Reference Frame
 10/12
 Metin Soycan and Arzu Soycan
 TS33.6 Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations

[^3]: TS 33 - Vertical Reference Frame
 Metin Soycan and Arzu Soycan
 TS33.6 Geoid Heights Computation from GPS Data and Classical Terrestrial Zenith Angle Observations

