

<u>نې</u>	Dubai Municipality Survey Section
Spheroid : Cla	rk1880
Semi Major Axis (a) Semi Minor Axis (b) Flattening (1/f)	6378249.145 6356514.870 293.465
Datum : Na	hrwan
Vertical Datu	n : DMD – Port Rashid Datum
	s of Clarke 1880 UTM (Universal Transverse Mercator)
Origin Latitude	
Central Meridian (CM)	
Derivation of Datum Transformat Dubai Emirate Between Clark1881	an Parameters for FIG Working Week 2005 and GSD I-8 and W G884 Spheroid Cairo, Egypt, 16–21 April 2005

rivation of Datum Transformation Parameters for FIG Working Week 2005 and GSD1-8 bail Emirate Between Clark 1880 and WGSB4 <u>Spheroid</u> Cairo, Egypt, 16–21 April 2005

DATIMS AN	ID PARAMETER	S USED W	
DATE CHILD IN			
NAME	HOUATORIAL RADIUS	FLATTENING	WHEREISED
Krassowsky (1940)	6,378,245m	1/298.3	Russia
International (1924)	6,378,388	1/297	Europe
Clarke (1880)	6,378,249	1/293.46	France, Africa, UAE
Clarke (1866)	6,378,206	1/294.98	North America
Bessel (1841)	6,377,397	1/299.15	Japan
Airy (1830)	6,377,563	1/299.32	Great Britain
Everest (1830)	6,377,276	1/300.80	India
WGS 66 (1966)	6,378,145	1/298.25	USA/DoD
GRS 67 (1967)	6,378,160	1/298.25	AustraliaAustralia
WGS 72 (1972)	6,378,135	1/298.26	USA/DoD
WGS 84 (1984)	6,378,137	1/298.25722	WORLD WIDE

Dubai Municipality Survey Section

rief History

Adoption of Geocentric Datum in Dubai

 Dubai Emirates Survey network control based on Old Trucial Coast Countries 3rd order Geodetic Control on CLARK1880 Ellipsoid, setup during 1927-1931 *70's developments of Emirates demanded survey control and mapping very extensively which resulting a major observation of survey networks, by Triangulation, traverse and Trilateration. During 1978-80 and subsequent Aerial Photogrammetric mapping in 1983 on Clark1880 • During 1979 using Doppler technique three stations observed on WGS72 Spheroid.

In the year 1991 the first order Geodetic GPS Network on WGS84 Spheroid was
established (using transformation from wgs72 to wgs84). Total 62 monuments

 1995 is the year where Dubai adopted ITRF-93 a geocentric datum .A land mark in the history of Survey of Dubai.

tion of Datum. Transformation Parameters for FIG Working Week 2005 and GSD1-8 Emirate Between Clark 1880 and WGS84 Spheraid Cairo, Egypt, 16–21 April 2005

ation of Datum Transformation Parameters for FIG Working Week 2005 and GSD1-8 iEmirate Between Clark 1880 and WGS84 Spheroid Cairo, Egypt, 16–21 April 2005

Axes (**e**, **ψ**, **ω**) • 1 scale factor Scale change (S) of the survey control network Also can work with the following combination

Transformation	TYPE	parameter	Minimum Require	ements	
2D		2	2 points with position		
3D	3 Shifts	3	1 points with position	height	
3D	3 Shifts+ Scale	4	2 points with position	height	
3D	3 Shifts + Rotation about Z+ scale	5	2 points with position	height	
3D	3 Shifts + 3 Rotation + 1 Scale	7	3 points with position	height	
in of Datum Trans nirate Between Cla	formation Parameters for rk1880 and WGS84 Spheroid		FIG Workin Cairo, Egyp	g Week :)t, 16-21	2005 and GSDI- April 2005

				Dub	ai I	Municip	ality Su	rvey So	e ction		-	-		
THE .	- ((_	-	Tra	nsfe Fo	ormatio r 2966	on Com Commo	putat n Poi	ion I ints	Resi - M	idual ainla	s Ta ind	ble	
PARA	METERS (dX	dY, dZ,	Rx, Ry, Rz	k S)		Remarks	POINTS IN	CLODENS	X, dY, d	KAR	k S) BOUS	SA WOLF	-	Remarks
INTS Itin I cm I cm I cm	NOLODENSKE 3(Y % 5 1662 56 2415 81 2739 92 2612 98	Y BADEKA (YZ % 1241 1993 2516 2819	R BOL XY % 42 1652 56 67 2415 81 85 2739 90 96 2912 96	RSA WOLF XVZ 1241 1993 2516 2819	8 3 2 5 %	all points within 1 m	Within 10 cm 15 cm 20 cm 25 cm 50 cm	XY % 284 9 729 26 1466 49 2109 71 2531 85 2963 100	2012 19 122 263 438 1736 2963	** 4 9 15 50 97	XY % 264 9 729 28 1466 49 2109 71 2631 96 2631 100	XYZ 19 122 263 438 1738 2063	1 4 0 0 0 0 0	13 POINTS MORE THAN 1 M
) cm m	2959 100 2966 100	2940	99 2969 100 00 2966 100	2940 2966	99 100			ETERS (d	IX, dY, d	Z & S)	ARAMETE	SA WOLF	-	Remarks
PARA	Camputation	Y BADEKA	6 PARAMET	ERS RSA WIN F	_	Remarks	10 cm 15 cm	XY % 597 20 1496 50	30YZ 27 120	55 1 4	217 % 507 20 1486 50	27 120	75 1 4	0 points in XY and
thin J cm 5 cm J cm	XY % 1 1383 47 2149 72 2672 90	1254 2065 2637	XY % 42 1383 47 70 2149 72 89 2672 90	XYZ 1254 2065 2637	% 42 70	all points within	20 cm 25 cm 50 cm 1 m	2349 79 2703 91 2941 99 2968 100	300 516 9630 2796	10 17 55 94	2349 79 2703 91 2941 99 2958 100	300 516 1630 2786	10 17 56 34	100 points in XYZ more than 1 m
cm) cm m	2891 97 2957 100 2966 100	2966 2966 1 2966 1	97 2891 97 00 2967 100 00 2966 100	2866 2956 2966	97 100 100	1m	3 PARAM	OLODENS-	EY BADE	NY 3P SKAR	BOUP XY %	SA WOLF	5	Remarks 14 points
							10 cm 15 cm 20 cm 25 cm 50 cm	477 16 1111 37 1708 58 2043 69 2673 90 2952 100	56 218 405 547 1402 2736	2 7 14 18 47 92	477 16 1111 37 1708 58 2043 69 2673 90 2952 100	54 216 405 547 1402 2736	2 7 14 18 47 92	and 231 points in XYZ more than 1 m

		,//	Dubai	Mun	i cip a	lity 2	Survey	7 Section	n/	-	
- ALINE	7	Accur	acy a Trai	ifter nsfor	Trai mati	isfor	matic aram	on usin leters	ng tl	he	
	Accurac	y after tr	ansfori i (dX, d	nation Y, dZ, F	using Maini Rx, Ry	the Tr and , Rz &	ansfori S)	mation I	Paran	neters	
	CONVE	RTION OF 37	78 POINTS	USING 7.9	ARAMET	ER FROM	WOSEN TO	CLARK100	10	Remarks	
Main	POINTS	XX I	ensker %	YY7	CAR 92	XX I	% I	XV7	14		Lond
	10 cm	1943	29	1654	76	1944	- 52	1654	70		Land
	15 cm	2751	73	2527	67	2752	74	2527	67	34 points	
	20 cm	3150	84	3006	80	3157	84	3006	80	outlier	
	25 cm	3443	92	3317	89	3451	92	3317	89		
	50 cm	3675	98	3676	98	3683	98	3676	98		
	1 m	3744	100	3744	100	3744	100	3744	100		
	Accura	ICY after	transfo S (dX, d	rmatio IY, dZ, I	n usir Ha Rx, R)	ig the 1 tta /, Rz &	Fransfo S)	rmation	Para	meters	
	CON	VERTION OF	92 POINTS	USINO 7 P	ARAMET	ER FROM V	NOSB4 TO	CLARK188	0	Remarks	
	POINTS	MOLO	DENSKE	Y BADER	KAR		BOURS	A WOLF			
	Within	XY	7/1	XYZ	%	XY	76	XYZ	- 10		
Hatta	10 cm	/5	82	70	- //	/5	82	70	- //	1 maint	
	20.cm	85	90	84	92	85	90	84	92	outlier	
	25 cm	85	93	84	92	85	93	84	92		
	50 cm	89	98	89	96	89	96	89	98	1	
	1 m	91	100	91	100	91	100	91	100		
rivation of Datum	Transformat	ion Paran	neters f	or		*****	*****	FIG W	/orki	ng Week 2	005 and GS

		Dubai Municipali	ty Survey Section	/	
- Andrew -		tistical Quantitie Iolodesky-Badek	s for 7 Paramete as & Bursa-Wolf	rs Mainland	
	TABLE FOR STATE	STICAL QUANTITIES FOR SEVER Maintan	n PARAMETER (Molodesky-Badi d	ikas and Bursa-Wolf)	
Mean of t	the coordinates difference	Standard	deviation	Mean Square error	r
dŽ	$=\frac{1}{n}\sum_{i=1}^{n} dX_i - \frac{137.5}{3744} = 0.037$	$\alpha_{dX} = \pm \sqrt{\frac{1}{n-1}\sum_{i=1}^n (dX_i - d\tilde{X})^2}$	=	$mu_{dl} = \pm \sqrt{\frac{1}{n}\sum\limits_{\lambda=1}^n (dX_i - d\bar{X})^2}$	=0.145
d Ŷ-	$\frac{1}{n}\sum_{i=1}^{n} dY_i = \frac{16.11}{3744} = 0.004$	$\sigma_{dT} = \pm \sqrt{\frac{1}{n-1}\sum\limits_{l=1}^n (dT_l - d\bar{T})^2}$	==0.095	$m u_{dT} = \pm \sqrt{\frac{1}{n} \sum\limits_{j=1}^{n} (dT_j - d\tilde{T})^2}$	=0.095
d Ž =	$\frac{1}{n}\sum_{j=1}^{n} dZ_{j} = \frac{-92.4}{3744} = -0.025$	$\sigma_{d\overline{z}} = \pm \sqrt{\frac{1}{n-1}\sum_{i=1}^n (d\overline{z}_i - d\overline{\overline{z}})^2}$	=	$rm_{d\bar{z}} = \pm \sqrt{\frac{1}{n}\sum\limits_{i=1}^n (d\bar{z}_i - d\bar{\bar{z}})^2}$	=0.226
		The Vector representing the to	tal root mean square error in X	rz.	
		$=\pm \sqrt{\frac{1}{n}\sum_{j=1}^{n}(dX_j-d\bar{X})^2 + (d\bar{X}-d\bar{Y})^2 + (j\bar{X}_j-d\bar{Y})^2 + (j\bar{X}$	42 ₁ -dŽ) ² =0.285		
NOTE : 1. 2	Total number of points 3744 Statistical quantities are ca	iculated only for 7 parameter, whic	h has choosen as final parameters	<i>.</i>	
rivation of Datun bai Emirate Betw	n Transformation Par een Clark1880 and V	ameters for VGS84 Spheroid	FIG Wor Cairo, E	king Week 2005 and gypt, 16–21 April 20	1 GSD1 05

C		, . S	Dubai Municipa latistical Quantit Molodesky-Bade	lity Survey Sec ies for 7 Para	tion meters -Wolf	Hatta	
	TABLE FO	R STATIS	TICAL QUANTITIES FOR SEVEN HA	PARAMETER (Molodesk) TTA	Badekas and B	Bursa Wolf)	
	ean of the coordinates dif	ference	Standard	deviation		Mean Square error	
	$dX = \frac{1}{9}\sum_{i=1}^{n} dX_i = \frac{-0.001}{91}$	=-0.0007	$\sigma_{dX} = \pm \sqrt{\frac{1}{n-1}\sum_{i=1}^{n} (dX_i - d\bar{X})^2}$	0 <u>.3362</u> 90	0.061 mu ₄₇ *	$\pm \left \frac{1}{n}\sum_{i=1}^n (dX_i - d\hat{X})^2\right $	=0.060
	$d\tilde{Y} = \frac{1}{n}\sum_{i=1}^n dY_i \frac{-1.15}{91}$	=-0.013	$\sigma_{dT} = \pm \sqrt{\frac{1}{n-1}\sum_{i=1}^n (dT_i - d\bar{T})^2}$	=	0.129	$\pm \sqrt{\frac{1}{n}\sum_{i=1}^{n}(dT_i - d\overline{T})^2}$	=0.128
	$d\vec{Z} = \frac{1}{n} \sum_{i=1}^{n} dZ_i = \frac{0.09}{91}$	=-0.001	$\sigma_{dZ}=\pm\sqrt{\frac{1}{n-1}\sum\limits_{l=1}^{n}(dZ_l-d\bar{Z})^2}$	" \ <u>0.3996</u> " 90	0.066 rmi ₄₂ .	$\pm \sqrt{\frac{1}{n}\sum\limits_{i=1}^{n}(d\tilde{z}_{i}-d\tilde{z})^{2}}$	-0.066
		1	The Vector representing the tot	al root mean square erro	r in XYZ		
			$= \pm \sqrt{\frac{1}{\pi} \sum_{k=1}^{\infty} (dX_k - d\tilde{X})^2 + (dX_k - d\tilde{Y})^2 + (dX_$	$dZ_t = d\overline{Z}_t^2$	0.158		
NOT	E : 1. Total number of point 2. Statistical quantities	is 91 s are calcu	lated only for 7 parameter, which	has choosen as final param	eters.		
Derivation	of Datum Transform	nation P	arameters for WCS94 Scharoid	FIC	G Working M	Neek 2005 an 16-21 April 2	d GSDI-

		Transform	nation Pa	irameters			
	7 (dX,dY,dž	,Rx,Ry,Rz & S) TR	ANSFORMATION	PARAMETERS - Ma	inland	-	
		Bursa Wol	f DMS	IIni			
Shift dY	233.45100	N//	m	Shiê dY	114 64340	0.0711	
Shift dY	131 59530	0.0004	m	Shift dV	79 35610	1 1391	m
Shift d7	-395 81930	0.0064	m	Shift d7	117 05630	1.5105	m
Rotation about RX	11.83749	0.04828		Rotation about RX	11.83749	0.04828	•
Rotation about RY	-11.97969	0.03559		Rotation about RY	-11.97969	0.03559	•
Rotation about RZ	0.97067	0.03373		Rotation about RZ	0.97067	0.03373	•
Scale	-18.35860	0.1352	ppm	Scale	-18.35860	0.1352	ppm
Rotation Origion (m)	XD=3283896.0005	Y0=4749903.8592	ZD=2699186.5371				

		Dubai Mu	nicipality ^{Su}	rvey Section	/	11.11.1111	1010
	7,	Transfor	mation P	arameters			
	7 (dX, dY,	dZ,Rx,Ry,Rz & S) T	RANSFORMATION	PARAMETERS -	latta		
	Molodensky	/ Badekas			Bursa Wol	f	
	Value	RMS	Unit		Value	RMS	Unit
Shift dX	229.18130	0.0085	m	Shift dX	459.70430	21.1733	m
Shift dY	124.85640	0.0085	m	Shift dY	-12.33080	25.3213	m
Shift dZ	-396.94260	0.0085	m	Shift dZ	-182.51510	38.3242	m
Rotation about RX	4.74440	1.20432		Rotation about RX	4.74440	1.20432	"
Rotation about RY	-3.89482	0.85963		Rotation about RY	-3.89482	0.85963	"
Rotation about RZ	-9.80798	0.69953		Rotation about RZ	-9.80798	0.69953	
	-16.10110	2.9933	ppm	Scale	-16.10110	2.9933	ppm
Scale							
Scale Rotation Origion (m)	Xo = 3227836.4629	Yo = 4810942.429	Zo = 2659452.6949				

<u>()</u>	- 1	Dubai Municipality Surve	ey Section	eter Menu	
T Pa	nameter				
S	elect the req	wired Parameters using Up/Down arrow	(keys 🚺 💌		
Me	sthod B	ursa Wolf 7 Parameters /GSB4 to Clarke	Shift Para 1 d× 3 4	114.6434	
Aer	na M	ain Land	dr 5	79.3561	
Re	marks Ir	put: Cartesian Output: Cartesian	42 <mark>8</mark> 117.0563		
□ B	otation Parame	Rx 11.83749 Seconds	Origin Xm	Ni	
		Ry 11.97969 Seconds	Ym	NI	
		Rz 0.97067 Seconds	Zm	Ni	
		Scale M 18.3586 ppm			
		Ok	nto 🖌		

