FIG Working Week & 8th International Conference on the Global Spatial Data Infrastructure (GSDI) Cairo, EGYPT. April 16-21, 2005

Landuse and Land cover Mapping of the Simiyu Catchment (Tanzania) using Remote Sensing Techniques

> J. Rwetabula & F. De Smedt Department of Hydrology and Hydraulic Engineering Free University Brussels, Belgium.

Fate/Transport and Objectives

- Trends of increasing contaminant (phosphorous and pesticides) concentrations in the Simiyu river originate from agricultural fields
- Transport: dissolved form or associated with sediments Study: to predict the transport of pesticides and phosphates in the Simiyu catchment, baseline data are prerequisite.
 i.e. "Land use/Land cover map"
- Problem: do not focus on pollution issues, old & cover big area
- Objective: Integrating remote sensing techniques and field data to reasonably map landuse and land cover in the Simiyu catchment, which provides recent and reliable information for water quality and quantity simulations

Area	10800 km^2
Topography	1140 - 1640 m
Soil type	Sandy loam (60%)
Landuse	Cultivated, Grassland, Bushland
Climate	Annual rainfall: 700 - 1000 mm
	Temperature: Average 23 ⁰ C
	Annual evaporation: 1973 mm
Hydrology	Discharge: 0 - 208 m ³ /s

Landuse and Land cover Mapping *cont.*

- Image registration
- Image registered using GCPs topographical maps scale 1:50,000, criteria at most RMS 0.5 pixel = 14.25 m
- Images processing (enhancement + interpretation) Differences among 2 scenes (different dates), colour composite band 345 (insignificant differences), scenes mosaicked and processed single images (Fig.)
- Results: Not all land use and land cover identified
- Alter. solution:

Use field data for supervised classification to classify satellite images, land-use & land cover in the Simiyu catchment

Landuse and Land cover Mapping *cont.*

Field data acquisition

 Prior field campaign: collection of all possible land-use & land cover categories, using frequency histograms of six bands, color composite images, principal component images, and general prior knowledge of landuse; 11 dominant categories were identified

• **Training sites selection:** 11 dominant categories in images 3, 4, and 5, principal component. Criteria: large coverage, uniformity and accessibility

- Training sites data collection Extensively 2002 and 2003, sites visited tallying image acquiring dates & digitized and stored in LT computer
- Note: Crops individually not identified (mixed)

Landuse and Land cover Mapping cont.

Classification (Idrisi32, Supervised & Maximum likelihood)

- Step 1: Training sites and signature development Training sites were digitized (band 345), uniformity, avoiding mixed pixels, ensuring at least 100 pixels & evenly distributed over study area
- Signature development (MAKESIG), evaluation (SIGCOMP), similar and overlapping signatures detected using box plots & HISTO
- Condition maximum likelihood method: means of signatures be significantly separable and uniformity of training sites maintained

<u>Step 2:</u> Classification, using maximum likelihood algorithm was performed to developed signatures

Recommendation

□ Possible improvement and subject for future work: The use of various sets of satellite images covering all seasons, to discriminate crop types from cultivated land or if existing from mixed short grasses and open land.

