

Problem Definition

- Problem Defininition
- Obiective and Methoodolocy
- Sucy Area

Need for Fast and Accurate Digital Terrain Model

- Stereo IKONOS Imagery: High Resolution Satellite Imagery Acquisition with Stereo Capability
- Used Data and Programs
- Experimental Work
- Photogrammetry Concepts: Mathematical Models applied to Stereo Satellite Images

Objective and Methodology
Selection of the most suitable Mathematical Model for IKONOS Stereo images restitution.

- Acquiring stereo IKONOS satellite images for a study area.
- Studying the various mathematical models for IKONOS satellite stereo image restitution, and analyzing the speciic equirements and using commercial sofitware packages.
- Assessing the resulits of the different mathematical models based
on high accurate ground control and check points.
Sudying the effect of the number and distribution of ground control points on the restitution results.

Used Data and Programs

- Stereo Panchromatic IKONOS Image the first Stereo IKONOS in Egypt (Archive of Satellite Company)
- Satellite Ephemeris Data are not released, Imagery vendors supoly RPC in Text File with the purchased Images.
- Ground Points collected by DGPS static technique.
- Commercial Software Packages:

PCI OthoEngine, ERDAS OrthoEase, Intergraph ZI Imaging SSK

- Developed Computer Programs using MatLab

Experimental Work

- Data Preparation and Ground Points GPS Measurement
- Analysis and Evaluation of Satellite Images Sensor Modeling

Data Preparation and Ground Points Coservation

- Prefield work
- Divide Study area with grid mesh
Fild work
- Field work

Verification of Point Locations Obsevation by Static DGPS
Post-field work
Postrield work

- aps Data Processin
GPS Deta Processing
Adjusting Nework Adjusting Newwork

Satellite Images Sensor Modeling

- Comparative Analysis and Evaluation of various Maithematical Models for Satellite Images
- Pational Function Model (Fim)
- Refined Rational Function Model
- 3D Afiline Proiection Model

Pational Function Model

- RrMfor Single Images (PCI OrthoEngine Software)

RFM Model for Stereo Images

- Rational Function Model using RPCs supplied with Image files Without ECPS RNSE in meters for

RNSE in meters for17 CPs (No GCPs)				
Sofware	\times	r	xY	z
ERDAS Orthozase	267	3.39	3.05	${ }_{6} .88$
Z1I maging ssk	3.53	3.69	3.61	5.97

Compatibles with results announced by satellite company(Space Imaging Nay 2003)

Pefined Pational Function Model

Modeling accuracy will be imporoved when using GCPs in the RFMmodel

$x+a_{0}+a_{1} x+a_{2} y=\frac{F_{1}(X, Y, Z)}{F_{2}(X, Y, Z)}$
 $y+b_{0}+b_{1} x+b_{2} y=F_{3}(X, Y, Z)$

 thirc-order polynomialcoefficients of Affine transiormation.

Refined R:FM Model for Single Images

- Using GCPs
with GCPs

$8 \mathrm{CCPs} / 17 \mathrm{CPs}$						$20 \mathrm{GCPs} / 5 \mathrm{CPs}$					
Image 000			Image 001			Image 000			Image 001		
x	Y	xy	x	Y	XY	x	Y Y	XY	x	Y	XY
1.59	1.83	1.71	1.58	0.96	1.31	1.51	1.29	1.40	1.44	0.98	1.23

Refined RiFM Model for Stereo Images

- Using GCPs

Z1 Imaging ssk

Bias Removing

3D Mathematical Models for Stereo Images

- Using GCPs

3D Affine Projection Models
3D Affine Projection Model for Single Images

- For Single Image

(Requations per point-8 e unkeowns)
- For Stereo Images
$x=a_{0}+a_{1} X+a_{2} Y+a_{0}, y$
$y=b_{0}+b_{0} X+b_{2} y+b_{0} z$

Using a Developed Least Squeres Conputer Program
(4equations per point-16 untiowns)
- Using dififerent number of GCPs

$\begin{aligned} & 8 \mathrm{GCPs} \\ & 17 \mathrm{CPs} \end{aligned}$						$\begin{gathered} 20 \mathrm{GCPs} \\ 5 \mathrm{CPs} \end{gathered}$					
Image 000			Image 001			Image 000			Image 001		
x	Y	xY	x	Y	${ }^{\text {xY }}$	x	Y	xY	x	Y	xy
1.70	1.52	1.61	2.14	0.94	1.65	1.21	0.95	1.09	1.60	0.91	1.30

3D Affine Projection Model for Stereo Images

Justification of 3D Affine Sensor Modeling

Using dififerent number of CCPS
"However, these models are appropriate only for cases in which perspective and elevation effects are small, such as satellite imagery or vertical mapping photography over flat terrain"

Reterence:
Deigitil Photocorammety: an acdendum to the Menual of Photogrammetry",
ASPRS(1996)
These models : 3Datifine Projection Model
KKONOS Satellite : Very high with small Fov

Conclusions

- Sub-meter accuracy in X and Y and $1.5-2 \mathrm{~m}$ in Z can be achieved for Stereo IKONOS imagery restitution process using two mathematical models (RiFM and 3D Afine Projection).
- RFMModel is straight forward, however, it requires commercial software packages that support RPC files.
- RiFM Model is sensor independent and supports non-iterative solution for the real time restitution, and it can be used for

Conclusions

- RFM Model provides more accurate results when refined by Bias/shift Removing (bias-compensated RFM) using One G.CP only.
- 3D Affine Projection Moodel provides slightiy more accurate results, however it is greatly affected by the number distribution and quality of GCPs.

Conclusions

- 3D Affine Projection Model was found to be the most suitable model for users with unavailable photogrammetry commercial software.
- Refined RFM is the most suitable model for users with available photogrammetry commercial software which utilizes RPCS, since it requires ONE control point only.

Recommendations

- Study Relief-Corrected 3D Afine Projection Model (projection of GCPs on a reference height plane), sinilar to Othorectified image generation technique for a single image.
- Development of Rigorous Mathematical Models for other Stereo High resolution satellite images with available camera parameters High resolution saleine images win availaoie camera paraneters
inforation such as QuickBird, and comparison with RPF and
3D Afine Models.
- Comparative analysis between different sources for DSNDDIM generation (Aerial photos, High/Medium/Low Resolution Satellite images, Laser scanning, Radar images, Ground surveying) versus accuracy, availability, cost, speed, and area coverage.

Thank You

