Comparative Analysis and Evaluation of Various Mathematical Models for Stereo IKONOS Satellite Images

by Nagawa ELASHMAWY¹, Yasser ELMANADILI², Hazem BARAKAT²

- 1. Survey Research Institute, National Water Research Center
- 2 Faculty of Engineering, Cairo University

Presentation Outlines

Problem Definition

- Objective and Methodology
- Study Area
- Used Data and Programs
- Experimental Work
 Data Preparation and Ground Points Measurements
 Analysis and Evaluation of Satellite Images Sensor Modeling
- Conclusions and Recommendations

Problem Definition

Need for Fast and Accurate Digital Terrain Model

- Stereo IKONOS Imagery: High Resolution Satellite Imagery Acquisition with Stereo Capability
- Photogrammetry Concepts: Mathematical Models applied to Stereo Satellite Images

Objective and Methodology

Selection of the most suitable Mathematical Model for IKONOS Stereo images restitution.

- Acquiring stereo IKONOS satellite images for a study area.
- Studying the various mathematical models for IKONOS satellite stereo image restitution, and analyzing the specific requirements for each mathematical model by developing computer programs and using commercial software packages.
- Assessing the results of the different mathematical models based on high accurate ground control and check points.
- Studying the effect of the number and distribution of ground control points on the restitution results.

Used Data and Programs

- <u>Stereo Panchromatic IKONOS Image</u> the first Stereo IKONOS in Egypt (Archive of Satellite Company)
- Satellite Ephemeris Data are not released, Imagery vendors supply <u>RPC in Text File</u> with the purchased Images.
- <u>Ground Points</u> collected by DGPS static technique.
- Commercial Software Packages:
 PCI OrthoEngine, ERDAS OrthoBase, Intergraph Z/I Imaging SSK.
- Developed Computer Programs using MatLab

1

Continue..

Ground Points Total of Twenty-Five Ground Points are Collected by Static Differential GPS Technique to be used as ground Control and Check points.

Experimental Work

- Data Preparation and Ground Points GPS Measurement
- Analysis and Evaluation of Satellite Images Sensor Modeling

Data Preparation and Ground Points Observation

Satellite Images Sensor Modeling

- Comparative Analysis and Evaluation of various Mathematical Models for Satellite Images
 - Rational Function Model (RFM)
 - Refined Rational Function Model
 - <u>3D Affine Projection Model</u>

Rational Function Model

- $\begin{array}{ll} & \mathsf{RFM for Single Images (PCI OrthoEngine Software)} \\ & x = \frac{a_1 + a_2 X + a_2 Y + a_2 x^2 + a_3 X^2 + a_4 X Y + a_4 X Y + a_4 x^2 X + a_4 x^2 Y + a_5 x^2}{b_1 + b_1 X + b_1 Y + b_2 X + b_1 X^2 + b_1 X^2 + b_1 X^2 + b_1 X^2 + b_1 X^2} \\ & y = \frac{c_1 + c_1 X + c_1 Y + c_2 X + c_2 X + c_1 X + b_1 X Y + b_1 X + c_2 X + c_1 X + b_1 X^2 + b_1 X^2}{a_1 + a_1 X + a_2 Y + a_1 X + a_2 X^2 + a_3 X^2 + a_4 X^2 + a_4 X + a_2 Y + a_4 X + a_2 X + a_3 X + a_4 X$
- RFM for Stereo Images (ERDAS OrthoBase and Z/I Imaging SSK)
 - $$\begin{split} &= \frac{a_{1}+a_{1}X+a_{2}Y+a_{2}Z+a_{3}X^{2}+a_{3}XY+a_{3}XZ+...+a_{3}Z^{2}X+a_{3}Z^{2}Y+a_{3}Z^{2}}{b_{1}+b_{3}X+b_{3}Y+b_{2}Z+b_{3}X^{2}+b_{3}XY+b_{3}Z^{2}+a_{3}Z^{2}}\\ &y_{2} = \frac{c_{2}+c_{3}X+c_{3}Y+c_{3}Z+c_{3}X^{2}+c_{3}XY+c_{3}ZY+$$

2

			omial (Coeff	icient	s (80	Para		ages rs) supplied by
				V	lithou	t GCF	<u>'s</u>		
					SE in r CPs (N	No GC		01	
			x	Y	XY	x	Y	XY	
			1.32	8.26	5.91	2.68	4.13	3.48	
									Continue
9 April 2 I	105	$\langle \rangle$	FIG	i Werkin	g Wee k 21	005 B.GS	D1-8 -TS	27.4	

.....

	Refined Rational	Function Model
	deling accuracy will be impr RFM model	oved when using GCPs in the
	$x + a_0 + a_1 x + a_2 y =$ $y + b_0 + b_1 x + b_2 y =$	
<i>х</i> апс <i>F_i</i> <i>a_i</i> ап	third-order polynomi coordinates <i>X</i> , <i>Y</i> and d b _i coefficients of Affine	e transformation.

Befined RFM Model for Single Images • Using GCPs With GCPs • B GCPs / 17 CPs 20 GCPs / 5 CPs image 000 image 001 image 00

• Us	sing	GCI	S													
					Z	/I Im	agin	g SS	к							
			CPs / CPs				CPs / CPs				CPs / CPs				CPs / CPs	
	х	Y	XY	Z	Х	Y	XY	z	Х	Y	XY	Z	х	Y	XY	Z
MSE	2 5 2	2 40	3.61	5 07	0.82	1 25	1.06	172	0.71	1 32	1.06	1.71	0.76	1 20	1.14	1.83

3D Ma	the	m	atio	cal	Мо	ode	ls	for	<u>S</u> 1	ter	<u>eo</u>	lm	ag	es		
Using GC	Ps															
			Ŀ	RD	AS (Orth	oBa	se								
			CPs / CPs			1 GC 17 (CPs / CPs				CPs / CPs	
	x	Y	ХҮ	z	х	Y	ХҮ	z	х	Y	хү	z	х	γ	ХҮ	z
RMSE	2.67	3.39	3.05	6.88	1.18	1.11	1.14	2.09	1.10	1.12	1.11	2.07	1.09	1.31	1.21	1.93
				B	ias I	Rem	ovi	ng								
19 April 2005			FIG	Workin	a Week		8. G 5 D 1	-8 -T S	27.4						E	lack

RPC Model Bias

Differences between	Point_Id	dX (m)	dY (m)	dZ (m)
	G10	-5.24	5.25	
calculated coordinates without	G11	-5.24	5.25	
GCPs and with any number of	G12	-5.23	5.26	
	G19	-5.23	5.28	
GCPs.	G3	-5.25	5.21	-8.23
	G33	-5.24	5.34	
 Mainly there is a SHIFT (Bias) 	G35	-5.23	5.23	
in the results of the RPC	G36	-5.25	5.21	
	G37	-5.24	5.23	
Model.	G38	-5.24	5.26	
	G40	-5.24	5.27	
	G42	-5.25	5.24	
	G43	-5.25	5.25	
	G44	-5.24	5.35	
	G45	-5.23	5.30	
	G 8	-5.25	5.29	
	G8b	-5.24	5,24	/-8.22

Sub Affine Projection Models • For Single Image $x = a_1 + a_1 + a_2 + a_3 + a_4 + a_5 + a_5 + a_5 + a_5 + b_1 + b_2 + b_2 + b_2 + b_3 + b_3 + b_4 + b_4 + b_5 + b_5 + b_5 + b_4 + b_4 + b_5 + b_4 + b_$

Continue.

Back

3D Affine Projection Model for <u>Single</u> Images

Using different number of GCPs

April 20

19 April 200 5

Image 000 Image 001 Image 001 Image 001 Image 001 X Y XY Y Y Y Y <th></th> <th></th> <th></th> <th>CPs CPs</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>GCPs CPs</th> <th></th> <th></th>				CPs CPs						GCPs CPs		
	In	nage 0	00	In	nage O	001	In	nage 0	00	Im	age O	01
1.70 1.52 1.61 2.14 0.94 1.65 1.21 0.95 1.09 1.60 0.91 1.3	x	Y	XY	х	Y	XY	х	Y	XY	х	Y	XY
	1.70	1.52	1.61	2.14	0.94	1.65	1.21	0.95	1.09	1.60	0.91	1.30

3D Affine Projection Model for Stereo Images

		CPs/ CPs				CPs / CPs				iCPs / CPs				CPs / CPs	
х	Y	XY	Z	х	Y	XY	Z	х	Y	XY	Z	х	Y	XY	Z
1.54	1.05	1.31	2.51	1.45	0.77	1.16	2.58	1.10	0.89	1.00	1.70	1.05	0.72	0.90	1.2

Justification

Justification of 3D Affine Sensor Modeling

"However, these models are appropriate only for cases in which perspective and elevation effects are small, such as satellite imagery or vertical mapping photography over flat terrain" Reference: "Digital Photogrammetry: an addendum to the Manual of Photogrammetry", ASPRS (1996) These models : 3D affine Projection Model IKONOS Satellite : Very high with small FOV

19 April 200 5

Conclusions

- Sub-meter accuracy in X and Y and 1.5-2m in Z can be achieved for Stereo IKONOS imagery restitution process using two mathematical models (RFM and 3D Affine Projection).
- RFM Model is straight forward, however, it requires
 commercial software packages that support RPCs files.
- RFM Model is sensor independent and supports non-iterative solution for the real time restitution, and it can be used for stereo IKONOS orientation without GCPs.

Conclusions

- RFM Model provides more accurate results when refined by Bias/shift Removing (bias-compensated RFM) using One GCP only.
- 3D Affine Projection Model provides slightly more accurate results, however it is greatly affected by the number, distribution and quality of GCPs.

Conclusions

- 3D Affine Projection Model was found to be the most suitable model for users with unavailable photogrammetry commercial software.
- Refined RFM is the most suitable model for users with available photogrammetry commercial software which utilizes RPCs, since it requires ONE control point only.

Recommendations

- Study Relief-Corrected 3D Affine Projection Model (projection of GCPs on a reference height plane), similar to Orthorectified image generation technique for a single image.
- Development of Rigorous Mathematical Models for other Stereo High resolution satellite images with available camera parameters information, such as QuickBird, and comparison with RPF and 3D Affine Models.
- Comparative analysis between different sources for DSM/DTM generation (Aerial photos, High/Medium/Low Resolution Satellite images, Laser scanning, Radar images, Ground surveying) versus the required accuracy of the flood extent prediction, with respect to accuracy, availability, cost, speed, and area coverage.

Thank You

9 April 2 0 0 5

		DD		xt Files			
		KP	Clea	AL LIIE2			
LINE_NUM_C_1	7.06E-04	LINE_DEN_C_1	1.00E+00	SAMP_NUM_C_1	1.61E-03	SAMP_DEN_C_1	1.00E+00
LINE_NUM_C_2	1.46E-02	LINE_DEN_C_2	2.16E-03	SAMP_NUM_C_2	9.88E-01	SAMP_DEN_C_2	2.16E-03
LINE_NUM_C_3	-1.00E+00	LINE_DEN_C_3	6.41E-03	SAMP_NUM_C_3	1.46E-02	SAMP_DEN_C_3	6.41E-03
LINE_NUM_C_4	1.67E-02	LINE_DEN_C_4	-1.32E-03	SAMP_NUM_C_4	1.66E-03	SAMP_DEN_C_4	-1.32E-03
LINE_NUM_C_5	-2.06E-03	LINE_DEN_C_5	4.63E-06	SAMP_NUM_C_5	5.83E-03	SAMP_DEN_C_5	4.63E-06
LINE_NUM_C_6	3.11E-05	LINE_DEN_C_6	-3.89E-06	SAMP_NUM_C_6	-8.16E-04	SAMP_DEN_C_6	-3.89E-06
LINE_NUM_C_7	1.50E-03	LINE_DEN_C_7	4.38E-06	SAMP_NUM_C_7	-1.39E-04	SAMP_DEN_C_7	4.38E-06
LINE_NUM_C_8	-2.37E-04	LINE_DEN_C_8	8.99E-06	SAMP_NUM_C_8	2.13E-03	SAMP_DEN_C_8	8.99E-06
LINE_NUM_C_9	-6.44E-03	LINE_DEN_C_9	-2.16E-05	SAMP_NUM_C_9	1.06E-04	SAMP_DEN_C_9	-2.16E-05
LINE_NUM_C_10	-2.40E-05	LINE_DEN_C_10	3.72E-06	SAMP_NUM_C_10	8.29E-07	SAMP_DEN_C_10	3.72E-06
LINE_NUM_C_11	3.78E-06	LINE_DEN_C_11	-3.31E-09	SAMP_NUM_C_11	7.66E-06	SAMP_DEN_C_11	-3.31E-09
LINE_NUM_C_12	-4.38E-07	LINE_DEN_C_12	-1.01E-09	SAMP_NUM_C_12	8.96E-06	SAMP_DEN_C_12	-1.01E-09
LINE_NUM_C_13	-4.89E-06	LINE_DEN_C_13	1.24E-09	SAMP_NUM_C_13	-2.52E-05	SAMP_DEN_C_13	1.24E-09
LINE_NUM_C_14	-2.60E-08	LINE_DEN_C_14	1.08E-09	SAMP_NUM_C_14	3.25E-06	SAMP_DEN_C_14	1.08E-09
LINE_NUM_C_15	-1.09E-05	LINE_DEN_C_15	4.54E-09	SAMP_NUM_C_15	3.52E-06	SAMP_DEN_C_15	4.54E-09
LINE_NUM_C_16	2.17E-05	LINE_DEN_C_16	-5.90E-09	SAMP_NUM_C_16	-2.42E-07	SAMP_DEN_C_16	-5.90E-09
LINE_NUM_C_17	-3.77E-06	LINE_DEN_C_17	-1.13E-09	SAMP_NUM_C_17	2.04E-07	SAMP_DEN_C_17	-1.13E-09
LINE_NUM_C_18	-1.02E-06	LINE_DEN_C_18	-7.23E-09	SAMP_NUM_C_18	-2.41E-06	SAMP_DEN_C_18	-7.23E-09
LINE_NUM_C_19	-4.48E-06	LINE_DEN_C_19	1.48E-08	SAMP_NUM_C_19	-7.63E-07	SAMP_DEN_C_19	1.48E-08
LINE_NUM_C_20	6.48E-08	LINE_DEN_C_20	-6.47E-10	SAMP_NUM_C_20	3.30E-09	SAMP_DEN_C_20	-6.47E-10
eneration, of RPCs		FIG We nir	g Week 2005	8. GSD1-8 -TS 27.4	$\Gamma /$		Back

$x = a_0 + a_1 X + a_2$	$Y + a_2Z$	
$y = b_0 + b_1 X + b_2$		
10, a1,, b3	: Para	meters describing
	(3)	rotation
	(2) (3)	translation non-uniform scaling and skew distortion
		rpreted as a 3D affine transformation followed by (Yamakawa and Fraser, 2004)

Rati	onal Polynomial F	unction		
	o be calculated using			
	Requires Large Num	ber of GCPs	40 G	CPs
	r			
	Min. No of GCPs	6	20	40
	No. of Parameters	12	40	80
	Remarks	1 st order RPF	2 nd order RPF	3rd order RPF