

Algerian Space Agency Center of Space Techniques

Investigation of deformations in North of Algeria with GPS data and kinematic model

Radia MIR, Salem Kahlouche, Saïd Touam

Space Geodesy Division

Center of Space Techniques – Arzew – ALGERIA CTS BP 13 - ARZEW - 31200 Email: mir_radia@yahoo.fr

Outline

- Geodynamical Context of the North of Algeria
- ♥ GPS data processing
- Modeling by the Kalman Filter
- **♥** Results analysis
- **\underline** Conclusion

Geodynamical Context of the North of Algeria

The North of Algeria, situated at the tectonic plate boundary, Particularly a complex limit of plates; it is an area with an:

- ✓ Intense seismic activity : El Asnam (54-80), M=7.3; Tipaza, M=6.0; Aïn Témouchent, M=5.8; Boumerdès (2003), M=6.8);....
- ✓ Geodynamical history of several phases
- Fast variation of the geological structures

Deformation

- 1. A convergence motion between the African and Eurasian plates,
- 2. Response of the higher crust to the tractions by the influence of the forces.

In Earth science, GPS is today a very powerful tool to quantify the tectonic movements.

The « Bernese » processing strategies and Kinematic deformation model with Kalman Filter

Tools and parameters of GPS data processing

- → Software used : BERNESE v. 5.0 and Kalman Filter,
- → Use of IGS precise ephemeris, satellite clock corrections,
- The ionospheric dispersion taken into account estimating a model by the L₃ (lonsphere free) linear combination of the L₁ and L₂ observables,
- → Troposphere : Saastamoinen standard model was used ,
- > Eccentricity of the phase centres reduced (orientation),
- → Other effects (Tides,...): Averaged over a period of 5 days of observations

Kalman Filter: it is essentially a set of mathematical equations that implement a predictor-corrector type optimal estimator that it minimizes the estimated error covariance.

- Prédiction of the new state and its uncertainty
- Correction with the new measurement

Analysis results with Kalman filter

Error estimation of the state vector:

The Euclidean distance between the point determined by GPS and its correspondent by Kalman filter estimate

Err =
$$\sqrt{(X_K - X_B)^2 + (Y_K - Y_B)^2 + (Z_K - Z_B)^2}$$

The Kalman Filter on the North of Algeria

Innovation of the 2001 period

Results:

- Amplitudes of the innovation vector are in centimeter order, significant innovation on the station LAGH;
- In addition, we remark that the similarity to the CAGL and ARZE stations, and a certain confidence between the measurements performed in 2001 and predicting the state vector in the same period.

Conclusions

- Realization of kinematic models predictive for deformation analysis in the Northern Algeria;
- Define and implement a methodology for studying the deformation field on a permanent GPS network;
- Validate an adjustment step based on the Kalman filter technique on a relatively small number of GPS stations and data;
- Correlation between the displacements obtained, would provide interesting indications into the approach taken and the feasibility of applying the Kalman filter for monitoring geodynamical deformations;