

Aprice Hamoi, Vietnam

information for a Smarter Life and Environmental Resilience"

Multi-Layer Optimisation Technique (M-LOT) for **Shallow Water Hydrographic Survey Mapping Using** Satellite-derived Bathymetry Application

First Admiral Dr Najhan MD SAID **National Hydrographic Centre** Port Klang, Malaysia

Sr Dr Rozaimi CHE HASAN Universiti Teknologi Malaysia Kuala Lumpur, Malaysia

22-26 April, Hanoi, Vietnam

Background

Acquisition technique of bathymetric data has evolve from shipborne platform to airborne and even by means of space-borne acquisition

Images retrieved from the NOAA Office of Coast Survey website: https://www.nauticalcharts.noaa.gov.

22–26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Background

- SDB is an acquisition method related to a systematic analysis modelling of the recorded light penetration intensity through the water column at different spectral bands (multi/hyperspectral)
- Various factors affected
 - height and direction of the sun
 - clouds and shadow
 - wind and sea surface condition
 - nature of seabed/sea bottom albedo
 - absorption and diffusion of light by the water column (turbidity, algae etc)
 - atmospheric condition
 - type of spectral bands

22–26 April, Hanoi, Vietnam

Background

Algorithms used for depth estimation/derivation from satellite images

- Banny and Dawson
 - Basic method.
 - Uses one band only.
- Lyzenga's
 - Uses multiple visible bands
 - Applicable to variable seafloor reflectivity
- Stumpf and Holderied
 - Adapting blue and green bands
- Lee's
 - Inversion method
 - Requires multiple bands (>5) and high resolution

22–26 April, Hanoi, Vietnam

SDB General Process Flow

- Geometric Correction
 - Correcting distortions of image
 - Improving horizontal accuracy
- Radiometric Correction
 - Calibration of recorded variance value reflected
 - Conversion to ToA radiance, ToA reflectance, sun-glint correction and atmospheric correction
- Radiometric Analysis for Depth Estimation
 - Ground truthing (radiative transfer model)
- Tidal Correction

THE SCIENCE OF WHERE

22-26 April, Hanoi, Vietnam

Study Motivation

Recognised as a cost and time effective solution - remote sensing environments Majority of the research conducted in Europe and American continents Few studies were carried out in Oceania and African coastal - outside of tropical climate environment Minimum sample of multispectral satellite images with limited study area Timely to have a detailed research in Malaysia - tropical environment No further analysis with survey standard - SP-44

22–26 April, Hanoi, Vietnam

The Study - Questions

How reliable this SDB technology in producing a consistent level of accuracy in the field of hydrographic surveying, especially for the shallow water area?

Which class of survey standard (IHO) that this technology capable of achieving?

What improvement can be developed to simplify the current processing procedure which can adopt into hydrographic surveying application?

22–26 April, Hanoi, Vietnam

The Study - Objectives

Examine & Identify the level of reliability produced from the algorithms focusing on the shallow water area which reflects on the hydrographic mapping applications

Analyse the degree of accuracy and standards of bathymetric data derived from SDB technology in meeting the standard and specifications laid by IHO

Improve the SDB empirical method results with optimisation technique focusing on the tropical environmental parameter

22–26 April, Hanoi, Vietnam

ORGANISED BY

PLATINUM SPONSORS

22-26 April, Hanoi, Vietnam

Research Area

22-26 April, Hanoi, Vietnam

Data

Satellite Data/ Category	Spatial Resolution	Collection/ Owner	Area/Date Captured	Metadata
Sentinel-2A (High-Resolution)	10 m	Free download from ESA Website	Tawau (29 Nov 2016) Labuan (28 June 2017)	MSI_20161129T134807 MSI_20170628T094035
Pleiades (Very High- Resolution)	2 m	Supplied by Malaysian Remote Sensing Agency under cooperation with the National Hydrographic Centre	Tawau (12 July 2016)	DS_PHR1A_201607120241209
WorldView2 (Very High-Resolution)	0.5 m	Supplied by Universiti Malaysia Terengganu under joint research Marine Ecosystem Mapping for Taman Laut Labuan Project under Department of Marine Park Malaysia	Labuan (26 June 2015)	15JUN26025812-P2AS- 056663834010

22-26 April, Hanoi, Vietnam

Data

Bathymetry Data	Depth Sensor	Positioning System	Spatial Resolution/Survey Order	Survey Area
SBES (30 Nov to 2 Dec 2016)	Odom Mk III	Veripos LD4	0.5 m Special Order	Tawau Port
MBES (6 to 27 April 2017)	Kongsberg EM 2040C	C-Nav 3050	0.5 m Special Order	Pulau Kuraman
SBES (6 to 27 April 2017)	Odom Mk III	C-Nav 3050	0.5 m Special Order	Pulau Kuraman

22-26 April, Hanoi, Vietnam

The Study-Processing (Tawau)

22-26 April, Hanoi, Vietnam

Processing (Pulau Kuraman)

Training Dataset

Full Dataset

22-26 April, Hanoi, Vietnam

Data Processing

22-26 April, Hanoi, Vietnam

Depth Derivation

THE SCIENCE OF WHERE

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Data Analysis

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Model Enhancement

22-26 April, Hanoi, Vietnam

Model Enhancement

22-26 April, Hanoi, Vietnam

Model Enhancement

22–26 April, Hanoi, Vietnam

The Study- Model Enhancement

ORGANISED BY

22-26 April, Hanoi, Vietnam

Model Enhancement

 Apply simple filtering algorithm using least square adjustment method for linear regression and the coefficient of determination value formula

$$\widehat{X} = (A^T P A)^{-1} (A^T P F)$$

$$F = Ax$$

$$R^{2} = \frac{\sum (\widehat{y}_{i} - \overline{y})^{2}}{\sum (y_{i} - \overline{y})^{2}}$$

22-26 April, Hanoi, Vietnam

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Regression Summary (Stumpf Tawau Port)					
Sentinel-2A Pleiades					
R Square	0.5948	0.6214			
Slope (Gain)	321.32	427.52			
Y-Axis Intercept (Offset)	- 326.85	- 383.49			
Observations	196	199			

Regressions Summary (M-LOT Tawau Port)						
		Sentinel-2A		Pleiades		
	Single Linear	Lower Layer	Upper Layer	Single Linear	Lower Layer	Upper Layer
R Square	0.7276	0.6035	0.1943	0.7424	0.3663	0.4761
Slope (Gain)	321.55	314.31	282.0	460.33	385.28	373.08
Y-Axis Intercept (Offset)	-327.11	-319.72	-285.64	-413.61	-345.93	-333.08
Observations	166	84	86	183	88	95

22-26 April, Hanoi, Vietnam

22-26 April, Hanoi, Vietnam

Regression Summary (Stumpf Pulau Kuraman)					
Sentinel-2A WorldView-2					
R Square	0.5665	0.4326			
Slope (Gain)	211.4	217.29			
Y-Axis Intercept (Offset)	-212.69	-179.03			
Observations	492	496			

Regressions Summary (M-LOT Pulau Kuraman)						
	Sentinel-2A			WorldView-2		
	Single Linear	Lower Layer	Upper Layer	Single Linear	Lower Layer	Upper Layer
R Square	0.5968	0.6798	0.5626	0.4326	0.7544	0.6055
Slope (Gain)	206.17	68.716	305.65	217.29	84.056	1295.7
Y-Axis Intercept (Offset)	-207.34	-67.634	310	-179.03	-67.894	-1095.3
Observations	488	165	328	492	225	272

22-26 April, Hanoi, Vietnam

Results & Analysis

Lyzenga model

Stumpf model

M-LOT model

22-26 April, Hanoi, Vietnam

Results & Analysis

Lyzenga model

Stumpf model

M-LOT model

22-26 April, Hanoi, Vietnam

Lyzenga model

Stumpf model

M-LOT model

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Lyzenga model

Stumpf model

M-LOT model

22-26 April, Hanoi, Vietnam

	Sentinel-2A (Tawau Port)		Pleaides (Tawau Port)		t)	
	Lyzenga	Stumpf	M-LOT	Lyzenga	Stumpf	M-LOT
Sample Variance	5.159	5.124	4.713	3.992	3.963	3.240
RMSE	4.464	4.459	4.307	4.323	4.435	4.379
Standard Deviation	2.271	2.264	2.171	1.998	1.991	1.800
Sum	-2203.843	-2196.262	-1409.845	-1061.813	-917.150	-272.315
Sample Count	2113	2113	2113	2213	2213	2213

22-26 April, Hanoi, Vietnam

	Sentinel-2A (Pulau Kuraman)		WV	2 (Pulau Kuran	nan)	
	Lyzenga	Stumpf	M-LOT	R-Lyzenga	Stumpf	M-LOT
Sample Variance	4.393	5.813	5.105	2.676	3.887	3.437
RMSE	2.118	2.411	2.263	1.841	2.975	1.958
Standard Deviation	2.096	2.411	2.259	1.634	1.972	1.854
Sum	-79793.673	9136.311	-32656.619	424317.754	1118489.646	316645.097
Sample Count	259013	259013	259013	502081	502081	502081

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

	Sentinel-2A (Tawau Port)				
	Lyzenga	Stumpf	M-LOT		
Total Samples	2113	2113	2113		
IHO Passed	822	826	906		
IHO Failed	1291	1287	1207		
	IHO Surv	ey Order Dis	tribution		
Special Order	209	207	198		
Order 1A/1B	297	299	399		
Order 2	316	320	309		

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

	Sentinel-2A (Tawau Port)				
	Lyzenga	Stumpf	M-LOT		
Total Samples	2113	2113	2113		
IHO Passed	822	826	906		
IHO Failed	1291	1287	1207		
	IHO Surv	ey Order Dis	tribution		
Special Order	209	207	198		
Order 1A/1B	297	299	399		
Order 2	316	320	309		

22-26 April, Hanoi, Vietnam

	Pleiades (Tawau Port)				
	Lyzenga	Stumpf	M-LOT		
Total Samples	2213	2213	2213		
IHO Passed	1019	1016	1149		
IHO Failed	1194	1197	1064		
	IHO Survey Order Distribution				
Special Order	214	217	283		
Order 1A/1B	417	429	500		
Order 2	388	370	366		

22-26 April, Hanoi, Vietnam

	Pleiades (Tawau Port)				
	Lyzenga	Stumpf	M-LOT		
Total Samples	2213	2213	2213		
IHO Passed	1019	1016	1149		
IHO Failed	1194	1197	1064		
	IHO Surve	ey Order Dis	stribution		
Special Order	214	217	283		
Order 1A/1B	417	429	500		
Order 2	388	370	366		

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

	Sentinel2A (Pulau Kuraman)		
	Lyzenga	Stumpf	M-LOT
Total Samples	460252	460252	460252
IHO Passed	166747	103418	151100
IHO Failed	293505	356834	309152
	IHO Survey Order Distribution		
Special Order	34245	18401	32311
Order 1A/1B	67143	39617	61991
Order 2	65359	45400	56798

22-26 April, Hanoi, Vietnam

	Sentinel2A (Pulau Kuraman)		
	Lyzenga	Stumpf	M-LOT
Total Samples	460252	460252	460252
IHO Passed	166747	103418	151100
IHO Failed	293505	356834	309152
	IHO Survey Order Distribution		
Special Order	34245	18401	32311
Order 1A/1B	67143	39617	61991
Order 2	65359	45400	56798

22-26 April, Hanoi, Vietnam

	Worldview-2 (Pulau Kuraman)		
	Lyzenga	Stumpf	M-LOT
Total	502081	502081	502081
Samples			
IHO Passed	239639	123147	235260
IHO Failed	262442	378934	266821
	IHO Survey Order Distribution		
Special Order	50692	14364	50167
Order 1A/1B	98634	43408	98235
Order 2	90313	65375	86858

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

	Worldview-2 (Pulau Kuraman)		
	Lyzenga	Stumpf	M-LOT
Total Samples	502081	502081	502081
IHO Passed	239639	123147	235260
IHO Failed	262442	378934	266821
	IHO Survey Order Distribution		
Special Order	50692	14364	50167
Order 1A/1B	98634	43408	98235
Order 2	90313	65375	86858

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Difficult to have good quality image

Minimum change to have an ideal condition/'acceptable' quality

Complex processing

- SDB for hydrography application heavily required an experience hydrographic surveyor supervision
- Tedious calibration techniques

Rough replication of seabed

Features not always detected and/or difficult to determine

Low depth (acceptable) penetration

- 10 m on average depends on water clarity
- Unable to meet S-44 Special Order and Order 1a

Sea bottom albedo effect

- Radiance/luminance very depending on seabed types, alga etc
- Require detail analysis especially on the factor of bottom type/albedo

22-26 April, Hanoi, Vietnam

SDB is not a rhetorical application for shallow water area in tropical environment

• Further study still required to improve the consistency (very shallow area)

Urgent need - to establish the standards for SDB application

Achievable as the new IHO SP-44 will have entirely new concept/objective oriented

About time to have a detail guideline for SDB application (shallow water area)

Adopting this promising technology as an assessment tool

Positive progress and promising results

Will give significant contributions to HOs/relevant agencies

More area to analyse especially on the factor of bottom type/albedo

22-26 April, Hanoi, Vietnam

"Geospatial Information for a Smarter Life and Environmental Resilience"

Dedication

Special thanks to various organisations and agencies for the

unconditional support to this study especially to

National Hydrographic Centre

Department of Survey and Mapping Malaysia

- Malaysia Remote Sensing Agency
- Board of Land Surveyors Malaysia
- Audience thank you for chook

22-26 April, Hanoi, Vietnam

chúc một ngày tốt lành

