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SUMMARY  

 

Bathymetric information about waterbody is of great importance to many professionals for the 

installation of moles, ducts, marinas, bridges, tunnels, mineral prospecting, waterways, 

dredging, silting control of the river, building or reassessing port dimensions, and lakes among 

others. Depths information about the presence of such a submerge area on a map is obtained 

via a bathymetric survey. But acquiring this information is economically cost implicative. 

Managers are deriving ways of getting adequate information about seafloor from using the 

conventional lead line to an advanced method of imploying single beam echosounder. 

Information is lost because of the single footprint of this instrument. Another challenge is that 

it is time consuming depending on the area of study. Since this instrument is limited in coverage, 

researchers have devised means of obtaining sparse information and then use interpolation to 

densify the data. Inverse distance weighting (IDW) has been employed to interpolate sounding 

data with discrepancies at the boundaries. Consequently, this study tends to investigate the 

behavioural pattern of IDW based on exponential value and how it affects boundaries.  
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1. INTRODUCTION 

 

The art and scientific study of nature, physical and chemical properties of features on, in or 

beneath waterbody to effectively mapped out its configuration from sets of measurement 

(depth, shoreline, tide, etc.) is referred to as hydrography (Ingham, 1984; IHO, 2019). This 

aspect of waterbody investigation gave birth to a specialized area of hydrography known as 

bathymetry survey “the determination of variation in-depth for a detailed presentation of the 

waterbed topography (Marian et al., 2012; Hell et al., 2012;). The information gained aid better 

understanding and interpretation to enhance the activities of marine navigation, dredging, 

offshore oil and gas exploration drilling, marine construction and other related operations 

within and outside waterbody environment (Ojigi et al., 2010; Hell et al., 2012; IHO, 2018). 

The information measured from a bathymetric survey is used to generate a map called nautical 

chart from which further information about other sections can be extracted (Igham, 1984). 

 

However, acquiring data via this method for the actual presentation of the seafloor have 

metamorphosed from the traditional method to the most sophisticated method with better 

resolution “lead line to single beam echosounder, swath beam echosounder to multibeam 

echosounder, and multibeam to side-scan sonar” nevertheless, each of this instrument method 

of data acquisition has its drawback. Most recent is the use of single beam or multibeam 

echosounder in connection with differential global navigation satellites system (DGNEE e.g. 

DGPS) to acquire spatial data “x, y, z” (Vermeyen, 2006; Hilldale and Raff, 2008). Thus, due 

to wider area of coverage and high cost of executing such bathymetry task, discrete data are 

acquired (Stefan et al., 2017) and afterwards interpolated for Digital Elevation Model (DEM) 

generation for spatial representation of the waterbed (Silverira, 2014; Ajayi et al., 2018). 

Consequently, the elevation/depths of the scanty area can be extracted (Lampe and Morlock, 

2007; Hansen, 2007). Hence, the overall data can be used to compute the storage capacity of 

the area under study. 

 

Furthermore, to understand the physical feature and content of the waterbody from bathymetric 

data, a spread of information is needed. In a situation where the information is scanty 

“especially from a single beam echosounder”, interpolation is used to account for the sparse 

area (Silverira, 2014). Although, data may be incomplete in two different ways: the absence of 

values in a dataset or the absence of values for locations in a geographic landscape (Yongwan 

and Daniel, 2013), therefore prediction is necessary to account for the sparse region.  Among 

the methods of interpolation are Kriging, Inverse distance weighting, Radial basis functions, 

etc. consequently, the Inverse distance weighting technique has found wide application by 

practitioners due its robustness and simplicity (Goff and Nordfjord, 2004; Merwade et al., 

2006). However, with discrepancies at the boundaries depending on exponent power imployed. 
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This setback at the boundaries will yield a poor output considering determining the storage 

capacity of a reservoir from discrete bathymetry data interpolated via IDW. Consequently, this 

study tends to investigate the behavioural pattern of IDW based on exponential value and how 

it affects boundaries and the volumetric capacity of a reservoir.  

 

2. INVERSE DISTANCE WEIGHTING: AN OVERVIEW 

 

Inverse distance weighting technique of estimation is also referred to as a deterministic method 

of interpolation; because the model utilizes mathematical functions for estimation (Ferreira, 

2015). In addition, deterministic interpolation techniques are classified into two sets; Local and 

Global. Their major difference is how they considered data during estimation (White and 

Hodges, 2005). The global deterministic takes the entire dataset into account during prediction, 

while the local deterministic considered dataset within its neighbourhood for densification. The 

decision of whether the surface should follow the pattern of the dataset or not is based on 

deterministic interpolator (Lark, 2009). However, there are exact and inexact predictions: if the 

prediction matches exactly the dataset, the interpolator is said to be an exact interpolator, and 

if there is a tremendous divergent between the measured value and the estimated value it is 

referred to as inexact interpolator (Petersen et al., 2008). This spatial prediction technique also 

referred to as spatial interpolation technique has received a wide application because of its 

simplicity, intuitiveness, and fastness to compute (Landim, 2000; Ferreira, 2015). In contrast, 

it also has some cons associated with it, such as choice of interpolation parameters, the 

interpolation is always exact “no smoothing,” sensitive to outliers and sampling configuration 

“clustered and isolated points” (Marcelo et al., 2015; Italo et al., 2017).   

 

This method of special prediction techniques does not involve statistical criterion when 

performing the experiment, which made it globally adopted as a dependable means of 

estimation. Hence, when a deterministic criterion is employed, determining the dependability 

are randomly chosen (Borga and Vizzaccaro 1997). Over the year’s researchers have been 

developing models to improve this interpolation technique: among which are Grid Inverse 

Distance Weighting as described by (Nalder and Wein 1998) “thus, the method involves using 

a regression process to predict the unknown from the climatic properties of the known points,” 

Selective Inverse Distance Weighting (SIDW) (Ballarin et al., 2017) etc. Though, each of this 

method is used base on the purpose and type of data to be interpolated. 

 

2.1 Evaluating Inverse distance models 

 

This method of interpolation has been appraised by various authors (Sonza, 2003; Marcelo et 

al., 2015; Ferreira, 2015; and Meng and Borders, 2013) as a robust method of representing 

waterbed configuration (Digital Elevation Model) because of its smoothness of representing the 

model location, in addition, its liberty of assigning dimension parameters within 

neighbourhood. The fundamental assumption of inverse distance weighted interpolation is that 

of a positive spatial autocorrelation (Olena and Clayton, 2008); the relationship between 

neighbouring dataset is highly correlated than that of a distant dataset (Yang et al., 2006; 

Landim, 2000). This is supported by equation 1: 
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Where H is the reduced water depth, 𝑝 is the exponent power employed, 𝑑 is the separation 

bandwidth which is evenly distributed on the interpolation surface from node to node, and 

occasionally in default by the mechanism. However, the default can be altered by the analyst 

based on the intended purpose of interpolating the data. The sigma notation indicates summing 

the entire points needed for interpolation; however, in this case summing the H values at the 

region with respect to distance. There will be no effect on the interpolated surface (H𝑃) if the 

value of the denominator is small (more distance).  

Furthermore, Shepard (1968) presented a prevalent form of estimating 𝐻 value from a known 

point 𝑋 depending on the samples data: 𝐻𝑖 = 𝐻(𝑋𝑖) 𝑓𝑜𝑟  𝑖 = 1, 2, 3 … , 𝑛 and in extension it is 

expressed as; 

 

                                                                                                   
 

 

 

 

The weight function 𝜔𝑖(𝑋) =
1

𝑑(𝑋,𝑋𝑖)𝑝                                                                          equation 3 

 

Where 𝑋 is the expected interpolated point, 𝑋𝑖 is the sample known point, 𝑑 is the distance from 

the known point to the predicted point, 𝑁 is the total sample size, while 𝑝 is the power exponent 

and a positive real number. Also, IDW is the georeferenced weighted average of known points 

within a specified neighbourhood (Shepard 1968; Franke 1982; Diodato and Ceccarelli 2005) 

and mathematically given as: 

 

(𝑍∗𝐻) = ∑ 𝜆𝑖𝑍(𝐻𝒊)
𝑁
𝑖=1                                                                                                  equation 4 

 

where 𝐻 is the inference region, 𝐻𝒊 = 1,2,3,...,n are the known region data, while Z*( 𝐻) is the 

inverse distance estimator at the region, N is the total points within the neighbourhood, 𝜆𝑖 (i = 

1,...,n) is the attributed weight to each search area,  are the weights assigned to each sample 

point, and 𝑍(𝐻𝒊) i = 1,2,3,...,n are the considered known points at a sub-region. The weight is 

calculated by 

 

𝜆𝑖 =

1

𝑑𝑖
𝑝

∑ (
1

𝑑𝑖
𝑝)𝑁

𝑖=1

                                                                                                                equation 5 

 

Provided that: ∑ 𝜆𝑖
𝑁
𝑖=1 = 1 

The parameters (𝑑 𝑎𝑛𝑑 𝑝) are separation distances and exponent. The weight is usually 

roundup as 1. The value of the weight is a function of distances “the higher the distance value 

𝐻(𝑋) =     

𝐻𝑖 

∑ 𝜔𝑖(𝑋)𝐻𝑖

𝑁
𝑖=1

∑ 𝜔𝑖
𝑁
𝑖=1 (𝑋)

     (
𝑖𝑓 𝑑(𝑋, 𝑋𝑖) ≠ 0 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖

𝑖𝑓 𝑑(𝑋, 𝑋𝑖) = 0 𝑓𝑜𝑟 𝑠𝑜𝑚𝑒 𝑖
)     

      equation 2 
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the lower the weight vice-visa,” for a higher value of 𝑝 the interpolated surface will become a 

plain surface of equal depth value (Diodato and Ceccarelli, 2005).  

 

To measure the degree of accuracy and conformity of the predicted surface to the unknown data 

via IDW, Olena and Clayton (2008), proposed a statistical formalism by introducing an 

estimation variance at the unknown area to determine the degree of reliability of the output. The 

statistical formalism introduced are based on stationarity “a two-phase requirement for 

conducting statistical prediction.” Firstly, that the dataset has a common mean throughout the 

region 𝐴, and secondly, that the variance is fixed thought the region 𝐴 (Deutsch, 2002). This is 

expressed as: 

 

Ε(𝑍(𝐻)) = 𝑚,    ∀𝐻 ∈ 𝐴                                                                                             equation 6 

 

𝑉𝑎𝑟(𝑍(𝐻)) =  Ε(𝑍(𝐻) − 𝑚(𝐻))2 = 𝜎2,    ∀𝐻 ∈ 𝐴                                                   equation 7 

 

Therefore, relating this to IDW estimator (𝑍∗𝐻) to a region 𝐻 and the postulated stationarity; 

thus, the mean and variance is given as: 

 

Ε(𝑍∗𝐻) =  Ε(∑ 𝜆𝑖𝑍(𝐻𝒊)
𝑁
𝑖=1 )                                                                                         equation 8 

= ∑ 𝜆𝑖Ε(𝑍(𝐻𝒊)) =𝑁
𝑖=1  𝑚 ∑ 𝜆𝑖 = 𝑚𝑁

𝑖=1                                                                          

 

𝑉𝑎𝑟(𝑍∗𝐻) = 𝑉𝑎𝑟(∑ 𝜆𝑖𝑍(𝐻𝒊)
𝑁
𝑖=1 )         

= ∑ ∑ 𝜆𝑖𝜆𝑖 𝐶𝑜𝑣(𝑍(𝐻𝒊), 𝑍(𝐻𝒋) )𝑁
𝑖=1

𝑁
𝑖=1                                                                         equation 9 

 

The 𝐶𝑜𝑣(𝑍(𝐻𝒊), 𝑍(𝐻𝒋) ) is the data-data covariance model computed based on stationarity 

conditions and assume symmetric subject to semivariogram model 2𝛾(𝐻) (Journel and 

Huijbregts 1978; Noel and Andrew 2016). These statistical estimators are determined at the 

data region base on the dataset value; the subregion variance and the stationarity variance 𝜎2 

converge at a definite point providing an avenue for assessment. In the stationarity, the local 

variance at each section should be equal to the global variance. Another factor to consider is 

the smoothing effect, which minimises the degree of errors associated with this method of 

spatial interpolation technique. The smoothing effecting is given as: 

 

𝑆𝑚𝑜𝑜𝑡ℎ𝑖𝑛𝑔 𝑒𝑓𝑓𝑒𝑐𝑡 = 𝜎2 − 𝑣𝑎𝑟(𝑍∗𝐻)  

= 𝜎2 − ∑ ∑ 𝜆𝑖𝜆𝑖 𝐶𝑜𝑣(𝑍(𝐻𝒊), 𝑍(𝐻𝒋) )𝑁
𝑖=1

𝑁
𝑖=1                                                                equation 10 

 

Furthermore, there is a correlation between Inverse distance weighting estimator and Inverse 

distance weighting variance, as presented in equation 10, which is also referred to as a missing 

variance. Summing the smoothing effect equation and IDW model a new function is obtained 

whose variance is equal to the stationary global variance 𝜎2 : therefore, to determine the global 

variance at a region 𝑯 the statistical equation…. is used (Deutsch, 2002; Olena and Clayton, 

2008).  

 

𝜎𝑒𝑠𝑡
2 =  Ε[𝑍 − 𝑍∗(𝐻)]2 
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= 𝜎2 − 2 ∑ 𝜆𝑖𝐶𝑜𝑣(𝑍(𝐻𝒊), 𝑍(𝐻) )𝑁
𝑖=1 + ∑ ∑ 𝜆𝑖𝜆𝑖  𝐶𝑜𝑣(𝑍(𝐻𝒊), 𝑍(𝐻𝒋) )𝑁

𝑖=1
𝑁
𝑖=1            equation 11 

 

However, the introduction of minimum error variance model into IDW is to enhance its 

accuracy further and to accommodate continuous-discrete data (Andreas and Jukka, 2015); 

although, the data has to be distributed into sub-data and then processed. This approached will 

be tedious considering the large volume of data, and as such different output will be obtained 

and later merged as one entity. Consequently, errors may result in the compilation of results. 

 

2.2 Evaluating exponent power and boundaries 

 

The exponential power is a key component that determines the spread and elevation of the 

predicted data. The effectiveness of exponent value to IDW spatial interpolation is pronounced 

when the sample data of the study area are adequately spread, especially about a discrete object, 

“discrete objects are objects with definite shapes such as water bodies, roads, buildings 

(Andreas and Jukra, 2015).” However, the results from this method vary depending on the 

exponent value for instance: low exponents (0-2) stress local anomalies; high exponents (3-5) 

soften local anomalies; and higher or equal exponents up to 10 results in even estimates 

(Landim, 2000). If these arguments hold, there will be bulging at the boundaries, and calculating 

the cubic content of discrete objects will be erroneous at the lower exponent power, and the 

tendency for inequality of 𝑍 value at the boundaries even after predefined is obvious. 

Since this method of spatial interpolation is sensitive to exponent value, the number of 

neighbouring points and their distance apart, hence, the need to precisely determine the best-fit 

exponent and bandwidth that adequately match the spatial data characteristic depends entirely 

on the analyst. In addition, several authors recommendations regarding the best-fit exponent are 

divergent. For instance, the following authors proposed; Morrison (1974), 3 ≤  𝑘 ≤  7; 

MacDougall (1976), 6 ≤  𝑘 ≤  9; Peucker (1980), 𝑘 ≤  6; and Hodgson (1992), 4 ≤  𝑘 ≤
 7; While Declercq (1996), suggested that 4 ≤ k ≤ 8, 16 ≤ k ≤ 24 favours smooth and rugged 

surfaces respectively. Contrarily to this is presented by Landim (2000), that 0 ≤  𝑘 ≤ 2, 3 ≤
 𝑘 ≤ 5, and 5 ≤  𝑘 ≤  10 results in; stress local anomalies, soften local anomalies, and equal 

𝑍 estimates throughout the surfaces respectively.  

 

3. DATA DESCRIPTION AND METHODOLOGY APPLIED 

 

To evaluate the effectiveness of IDW spatial interpolation technique over a discrete object such 

as a reservoir. This interpolation method was employed to interpolate Tagwai Dam bathymetric 

data. The sounding data was explicitly acquired for research purposes by the Authors. The total 

area of the reservoir at the instant of surveyed is 3,020,344.936𝑚2 (302.035hect) with a 

perimeter of 8,728.358𝑚. The maximum depth observed was 21.400𝑚. The reduced water level 

at the moment of sounding was 250.170𝑚, which was referenced to a sounding datum 

established around the corridor of the reservoir. The bathymetric dataset was reduced to the 

water level, and the maximum and minimum data was 250.170𝑚 and 228.770𝑚, respectively. 

The total spatial points data was 673, including 90 shorelines delineated points data, which was 

observed by traversing the entire reservoir to define the discrete object adequately. With a total 

of 17 cross sectional strips. Figure 1 describes the strip pattern of the sample data; in addition, 
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is the defined shoreline information to enhance the estimation process of the discrete object 

spatially. 

 

 

 

Figure 1: Sample data-Tagwai Reservoir in Nigeria (Sour: Research lab) 

 

The experiment was conducted in the interface of IDW spatial interpolation techniques with 

optimal parameters chosen to achieve effective output. The spatial spacing was set at 27.323m, 

27.200m in the 𝑋 and 𝑌 directions respectively, with a linear 𝑍 transformation. The search 

geometric ellipse radius was projected at 1550m and 1550m in both axes, while the anisotropy 

ratio and angle were left at the default of 1 and 0. The number of neighbouring sample data 

determine the accuracy of the estimated location, in view of this: the following parameters were 

used to enhance the experimental results; the number of sectors to search was 4, maximum data 

to use from all sectors was 64, maximum data from each sector was 16, minimum data from all 

sectors was 8, and assign no data when more than 2 sectors are empty. These parameters were 

kept constant all through the experiment for the purpose of maintaining consistence. One of the 

major factors that described the trend of 𝑍 value after estimation is the exponential component. 

In order words, different exponent power value results in a change in the output surface. Hence, 

different power values were used this research that is; 𝑝 = 2, 4, 6, 8, 10, 12, 14, 16, 18 𝑎𝑛𝑑 20. 

Even exponent numbers “𝑝 = 2, 4, … , 20" were used to avoid the complexity of data. 

Consequently, odd numbers (3, 5, 7, 13, 17, and 19) were not adopted in order to maintain 

uniforminity and it has no impact in the symmetrical shape of the reservoir. The volume of the 

reservoir was computed using trapezoidal and analyzed based on exponent employed. 

 

3.1 Discussion of Cross-validation Output 

 

The cross-validation report shows the results of the experiment conducted via inverse distance 

weighting depending on variate exponent number. Hence, the active data was 673, which 

obviously indicated that there are no excluded, deleted duplicates, retained duplicates, artificial, 

and superseded data, respectively. From table 1, it shows that the estimated nodes with spatial 

values are equal in 𝑝 = 2 𝑎𝑛𝑑 𝑝 = 4, but reduced by 3 in subsequent powers due to spread. 

Also, it will be observed that the coefficient of multiple determination (𝑅2) remained constant 

in all stages, which implies that there exists a homogeneity correlation between the measured 

and estimated data. However, there is a small additive decimal change in standard error which 

continue progressively by 0.001. Another component that changes is the coefficient of 

variation, but only at 𝑝 = 2, 4 𝑎𝑛𝑑 6, others remained the same all through the processes. 

Conversely, the root mean square error varies according to exponent value and indicates that 
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the results are reliable and that the interpolated sample are sufficiently spread. The univariate 

statistics of the 𝑍 component shows that the global variance increases progressively as the 

power factor was increased, indicating that exponent value influences the outcome of variance. 

 

Table 1: Cross-validation results 
IDW 𝑅2 Estimated Points Standard Error Coef of Variation RMSE Variance 

𝑝 = 2 0.063 7400 0.035 0.012 1.046 9.312 

𝑝 = 4 0.063 7400 0.042 0.015 0.138 12.930 

𝑝 = 6 0.063 7397 0.045 0.016 0.007 14.772 

𝑝 = 8 0.063 7397 0.046 0.017 0.032 15.887 

𝑝 = 10 0.063 7397 0.047 0.017 0.051 16.657 

𝑝 = 12 0.063 7397 0.048 0.017 0.063 17.217 

𝑝 = 14 0.063 7397 0.049 0.017 0.074 17.636 

𝑝 = 16 0.063 7397 0.049 0.017 0.083 17.954 

𝑝 = 18 0.063 7397 0.049 0.017 0.091 18.199 

𝑝 = 20 0.063 7397 0.050 0.017 0.097 18.388 

 

 

4. RESULT AND DISCUSSION  

 

The trend surface was assessed based on the varying exponential number and how it best fit or 

describe the data at the boundaries. Such assessment aided to know which exponent number is 

suitable for the determination of cubic content in a discrete object when IDW is applied to 

account for the sparse area of a dataset. To adequately compute the volumetric content a 

reservoir, it must have a definite shape and homogenous level in all sphere. Obviously, IDW 

spatial interpolation technique is adequate for estimating spatial data, because it maintains the 

data characteristic of maximum and minimum data limit, and even after interpolation the Z 

output is efficient and reliable. However, adhering to defined discrete boundaries is a major 

challenge at lower exponents power. This setback is described in figure 2 through figure 10 that 

is “figure 𝑝 = 2 to figure 𝑝 = 18” which indicated that the inferenced exceeded its defined 

boundaries thereby given false information about the surface beyond the maximum Z values. 

With this problem, calculating the cubic content based on the output will amount to determining 

the content of an open-ended object. An argument may be that the program should assign no 

data outside the convex hull of data, as shown in figure 12. The black area in figure 12 is the 

area where there are no estimated data as programmed before the experiment was conducted. 

This altered the shape and trend of the surface, which is not an exact replicate of the sample 

data. These figures (figure 2 to figure 10) described the inconsistency of exponent value to 

boundaries, but as the power value increases the external surface becomes levelled gradually 

making it suitable for the computation of volumetric content. At exponent 𝑝 = 20, the external 

surface becomes almost even, and a closed discrete object, as illustrated in figure 11.  
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The dynamic surface trend beyond the boundaries varies continuously to an extent where the 

external surface equals the defined boundaries (figure 11). Figure 2 to figure 10 described the 

dynamic behavioural pattern of this spatial interpolation technique as it continues to change 

from grey to cyan and finally to complete blue representing equal level as shown in figure11. 

Usings the components considered for processing figure 12 will yield the desired volume of the 

discrete object when computed. 

 

 

 

 

 

 

 

 

 

Figure 2-11 shows the relief digital elevation model and their behavoiral pattern based on 

different exponent number (source: research lab). 
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4.1 Volume computation on varying exponent 

 

The volume of the irregular surface (Reservoir) was computed using trapezoidal rule based on 

different exponential number to assess the capacity of the container. Table 2 present the results 

of the enclosed surface of the discrete object; the outcome shows that the volumetric content 

increased progressively as the exponent power was enhanced, thus, describing the negative 

effect of lower exponent for interpolating discrete data. At lower power value the surface shape 

is altered at the edges making it looked like a flat surface. However, as the exponent number 

increases the shape at the boundaries started taking shape gradually and representing the actual 

enclosed container. This statement is supported by figure 2 to figure 11 above.  

 

 

Table 2: Volume computation on varying exponent 
Varying exponent value Volume (m3) Percentage (%) 

𝑝 = 2 87164733 9.537 

𝑝 = 4 89100009 9.749 

𝑝 = 6 90411448 9.892 

𝑝 = 8 91285010 9.988 

𝑝 = 10 91892165 10.055 

𝑝 = 12 92326929 10.102 

𝑝 = 14 92644192 10.137 

𝑝 = 16 92878593 10.162 

𝑝 = 18 93053254 10.182 

𝑝 = 20 93184224 10.196 

Total 913940557 100.000 

 

Furthermore, the change in volume between 𝑝 = 2 𝑎𝑛𝑑 𝑝 = 4 which is 0.212% was greater 

compared to the difference between 𝑝 = 18 𝑎𝑛𝑑 𝑝 = 20  which equate to 0.014%, as the 

power number increases the change in volume between subsequent power becomes minimal. 

Therefore, suggesting that at a point the volume becomes equal irrespective of the exponent 

value.  

 

5. CONCLUSION AND RECOMMENDATIONS 

 

Inverse distance weighting of spatial interpolation technique has proven efficiency in handling 

open-ended data with adequate speed. However, its behavioural pattern to discrete data at the 

boundaries has not been investigated. Consequently, this research investigated the dynamic 

nature of this spatial estimation technique to discrete data (reservoir) based on varying the 

exponential number. The results demonstrated that IDW has the tendency of bull's-eye pattern 

at the boundaries as shown in figure 2, 3, and figure 4 that is "𝑝 = 2, 𝑝 = 4 𝑝 = 6"; on the other 

hand, as the exponent number was increased the menace gradually fadeaway and blended with 

the edges and then forming a better surface at the boundaries. Eventually, the constant level 

was homogenous all through the surface outwardly when 𝑝 = 20.  The volume computed 

increased as exponent number was evenly added from the starting point. Similarly, this method 

maintained the maximum and minimum data limit all through the experiment. Consequently, 

presenting an adequate digital elevation model of the discrete object (reservoir). Therefore, this 

research recommends a higher exponent number between the neighbourhood of 20 to 24 for 

interpolating discrete data when the cubic content is to be determined. Also, the shoreline 

Evaluation of Exponential Factor on Boundary Value Problem of Inverse Distance Weighting Method of Interpolation

(10401)

Pius Onoja Ibrahim and Sternberg Harald (Germany)

FIG Working Week 2020

Smart surveyors for land and water management

Amsterdam, the Netherlands, 10–14 May 2020



 

should be adequately defined with equal level. Nevertheless, other methods of spatial 

interpolation can be used to inference bathymetric data. Also, this method (IDW) with varying 

exponent should be investigated by employing different software as the one used in this research 

is Surfer 17.  
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