

68-years old but fit citizen

due to accident, need wheelchair

prefer aging in place

2020/04

How to identify issues for barrier-free living?

automated decision support¹

competence transfer

Scan-to-BIM

E-Health and Care 4.0

Bastian Plaß

10968

Evaluation of point cloud data acquisition techniques for Scan-to-BIM workflows in Healthcare

evaluate data acquisition technologies for BIM modeling of indoor places by unknowledgeable users for e-health application

How have the evaluation criteria been defined?

technical criteria

3D point accuracy 2D range accuracy measurement noise point density

usage principle

usability of measurement simplicity of processing reliability of technology cost of sensor required software

PLATINUM SPONSORS

according to DIN 18040-2

Trimble

5

Which 3D data acquisition technologies were evaluated?

Where was the study made?

Where was the study made?

reference scan of Trimble X7

Resulting 3D point cloud data of Leica BLK2GO

✓ geometric accuracy✓ usability

- × point density <> motion
- × scan pattern
- × high cost

Resulting 3D point cloud data of Nikon D3200 SLR

- ✓ point density✓ low cost
- × geometric inaccuracy
- × noisy data by improper use
- imes special software required

[©] Nikon

Resulting 3D point cloud data of Intel RealSense L515

- ✓ geometric accuracy
 ✓ low noise
 ✓ usability
 ✓ low cost
- additional software required
 occlusion if improper use

© Intel

Resulting 3D point cloud data of Apple iPad Pro with 3D Scanner AppTM

© Apple

- ✓ low noise
 ✓ usability
 ✓ simplicity
 ✓ low cost
- ✗ geometric inaccuracy✓ reliability

What is the result and benefit? — Lessons learned

- point cloud results from low-cost consumer products proves to be sufficient
- LiDAR as powerful technology for E-Health and several other industries dealing with fast 3D data analysis

Contact and Social Media — Bastian Plaß M.Sc.

Mainz University of Applied Sciences

Research project bim4cAlre

4BIM CAIRE

Office C1.20 Lucy-Hillebrand-Street 2 55128 Mainz (Germany)

+496131 628-1496 <u>bastian.plass@hs-mainz.de</u> **fin** R^G **X**

Bastian Plaß

10968

Evaluation of point cloud data acquisition techniques for Scan-to-BIM workflows in Healthcare

References

¹ Plaß, B. et al. (2021): BIM on artificial intelligence for decision support in e-health. In: Intern. Archives of Photogrammetry, Remote Sensing und Spatial Sciences (ISPRS)

