

11–15 SEPTEMBER 2022 Warsaw, Poland

Workshops: Extracting Geospatial information from IFC using Python

Szymon GLINKA

Faculty of Geo-Data Science, Geodesy, and Environmental Engineering, AGH University of Science and Technology, al. Mickiewicza

30, 30-059 Krakow, Poland

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Agenda

- Introduction
- BIM and GIS
- Challenges
- Python and Ifcopenshell
- Case studies in Python
 - #1 Georeference model
 - #2 Extracting geospatial information
 - #3 Saving to GIS/Survey formats
- Summary

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

BIM and **GIS**

Criteria	BIM	GIS
Application	information management during object life cycle - 3D model and metadata	create, store, manage, analysys, share of spatial data
Level of detail	single component of object	object
Scope of information	object and individual information from the environment	surroundings of the object
Standards	IFC, ISO-19650, ISO- 16739	CityGML, WMS, WFC, WCS, LandXML, ISO 191XX
Location	local*	global
Geometric representation	CSG (Constructive Solid Geometry), Swept Solid	B-Rep

Why integrate?

$$2 + 2 = 5$$

BIM GIS

synergy and complementarity

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

BIM and GIS

JWG 14: ISO/TC 59/SC 13 and ISO/TC 211

BIM&GIS interoperability

ISO/TR 23262:2021 – GIS (geospatial) /

BIM interoperability

Understanding and managing the natural and built environment

Geospatial modelling

Joint ISO/TC 59/SC 13 - ISO/TC 211 WG:
GIS-BIM interoparability

Built asset modelling

Planning, designing, construction and operation of built assets

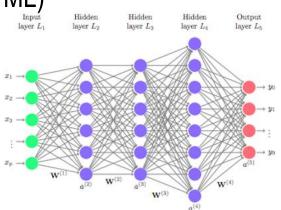
ISO/TC 211: ISO 19101, ISO 19103, ISO 19104, ISO 19105, ISO 19106, ISO 19107, ISO 19108, ISO 19109, ISO 19110, ISO 19111, ISO 19136, ISO 19150

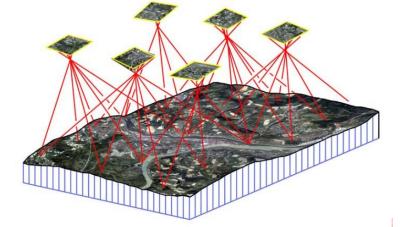
GIS

ISO/TS 19166:2021 – Geographic information – BIM to GIS conceptual mapping (B2GM)

ISO/TC 59/SC 13: ISO 16739-1, ISO 29481, ISO 19650, ISO 12006

11-15 SEPTEMBER 2022 Warsaw, Poland


Volunteering for the future – Geospatial excellence for a better living


BIM and surveyor

NEW:


- Tools UAV, UGV, Satellite, Laser Scanners etc.
- Data Big Data, different formats, data fusion
- Tasks (or the same but performed differently)

Methods/algorithms (DL/ML)

Scan2BIM

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

BIM and surveyor

NEW:

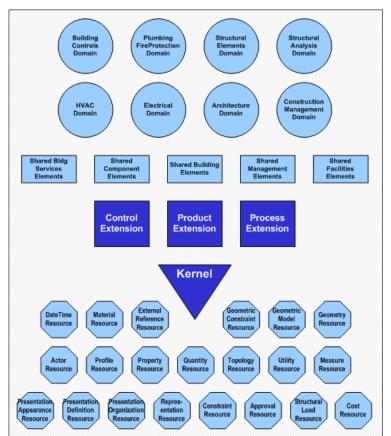
- Tools UAV, UGV, Satellite, Laser Scanners etc.
- Data Big Data, different formats, data fusion
- Tasks (or the same but performed differently)
- Methods (DL/ML)

More?

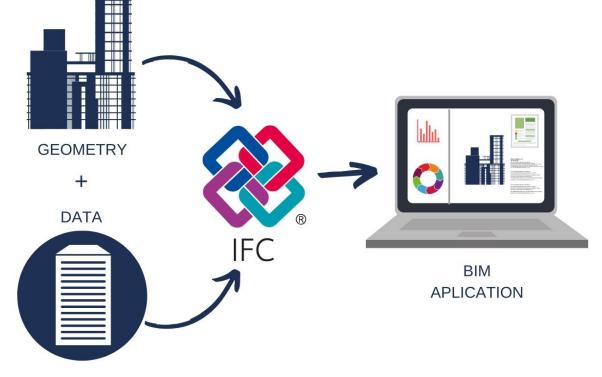
Szymon Glinka, **Tomasz Owerko** and **Karolina Tomaszkiewicz** (Poland): Information Exchange Using the Open IFC Format from a Surveyor's Perspective (11472)

INVITE!

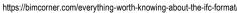
Wednesday, 14 September 16:30–18:00 Poplar/Alder, DoubleTree by Hilton



11-15 SEPTEMBER 2022 Warsaw, Poland

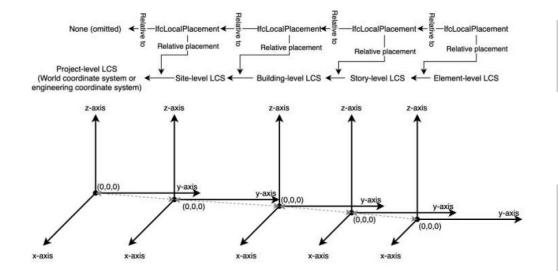

Volunteering for the future – Geospatial excellence for a better living

IFC



https://standards.buildingsmart.org/IFC/RELEASE/IFC4/FINAL/HTML/schema/chapter-5.htm

IFC – Industry Foundation Classes (ISO 16739-2018) – common AEC language


11-15 SEPTEMBER 2022 Warsaw, Poland

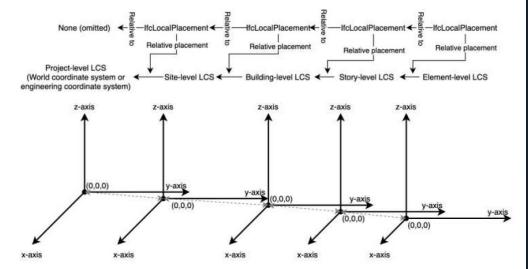
Volunteering for the future -Geospatial excellence for a better living

Challenges

Basic:

Georeferencing

LoGeoRef	CRS	Klasy IFC
LoGeoRef10	No CRS, approximate location based on address	IfcPostalAddress referenced by IfcSite or IfcBuilding
LoGeoRef20	WGS84 EPSG:4326	Attributes: RefLatitude, RefLongitude, RefElevation of IfcSite
LoGeoRef30	Any CRS (no definition in file)	IfcCartesianPoint (reference point), IfcDirection (stores rotation relative to the project or global north) refer to IfcSite
LoGeoRef40	Any CRS (no definition in file)	WorldCoordinateSystem attribute storing the coordinates of the reference point in any CRS and the TrueNorth direction. Both of these are stored in the IfcGeometricRepresentationContext.
LoGeoRef50	Any CRS defined using EPSG	Reference point coordinates stored in IfcMapConversion using Eastings, Northings and OrthogonalHeight attributes for global height. Rotation for the XY plane, stored using the XAxisAbscissa and XAxisOrdinate attributes. The CRS applied is defined by the IfcProjectedCRS attribute in the Name attribute using the relevant EPSG code.


11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Challenges

Basic:

Georeferencing

When projections are your weak point!

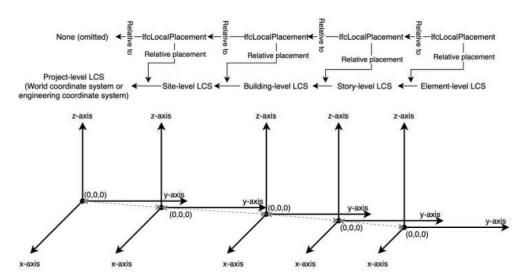
dress referenced by IfcSite or IfcBuilding

RefLatitude, RefLongitude, RefElevation klasy

nPoint (reference point), IfcDirection (stores tive to the project or global north) refer to

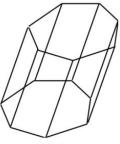
linateSystem attribute storing the coordinates of ce point in any CRS and the TrueNorth oth of these are stored in the icRepresentationContext.

point coordinates stored in IfcMapConversion ngs, Northings and OrthogonalHeight attributes eight. Rotation for the XY plane, stored using pscissa and XAxisOrdinate attributes. The CRS efined by the IfcProjectedCRS attribute in the rute using the relevant EPSG code.

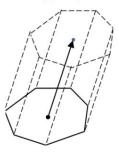

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future -Geospatial excellence for a better living

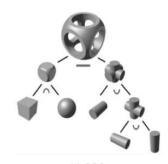
Challenges


Basic:

Extracting geospatial data (geometry)



implicit vs explicit


Туре		
Point		2 or 3 dimensional point(s)
PointCloud		3 dimensional points prepresented by a point list
Curve		2 or 3 dimensional curve(s)
Curve2D		2 dimensional curve(s)
Curve3D		3 dimensional curve(s)
Surface		2 or 3 dimensional surface(s)
Surface2D		2 dimensional surface(s) (a region on ground view)
Surface3D		3 dimensional surface(s)
FillArea		2D region(s) represented as a filled area (hatching)
Text		text defined as text literals
Advanced Surface		3 dimensional b-spline surface(s)
Geor	netricSet	points, curves, surfaces (2 or 3 dimensional)
	GeometricCurveSet	points, curves (2 or 3 dimensional)
	Annotation2D	points, curves (2 or 3 dimensional), hatches and text (2 dimensional)
SurfaceModel		face based and shell based surface model(s), or tessellated surface model(s)
	Tessellation	tessellated surface representation(s) only
SolidModel		including swept solid, Boolean results and Brep bodies; more specific types are:
	SweptSolid	swept area solids, by extrusion and revolution, excluding tapered sweeps
	Advanced Swept Solid	swept area solids created by sweeping a profile along a directrix, and tapered sweeps
	Brep	faceted Brep's with and without voids
	AdvancedBrep	Brep's based on advanced faces, with b-spline surface geometry, with and without void
	CSG	Boolean results of operations between solid models, half spaces and Boolean results
	Clipping	Boolean differences between swept area solids, half spaces and Boolean results
addit	ional types	some additional representation types are provided:
	BoundingBox	simplistic 3D representation by a bounding box
	SectionedSpine	cross section based representation of a spine curve and planar cross sections. It can re
	LightSource	light source with (depending on type) position, orientation, light colour, intensity and att
	MappedRepresentation	representation based on mapped item(s), referring to a representation map. Note: it can

(a) B-Rep

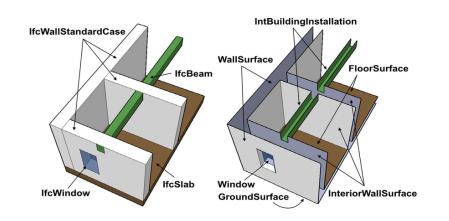
(b) Swept solid

(c) CSG

Volunteering for the future – Geospatial excellence for a better living

11-15 SEPTEMBER 2022 Warsaw, Poland

Challenges


Basic:

Saving in GIS/Survey Formats

BIM

IFC dot.bim

CONVERSION/TRANSLATION

GIS

CityGML CityJSON SHP LandXML

. . .

XXVII FIG CONGRESS 11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Python and IfcOpenShell

http://ifcopenshell.org/

https://github.com/lfcOpenShell/lfcOpenShell

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Case studies

- #1 Georeference model
- #2 Extracting geospatial information
- #3 Saving to GIS/Surveyors formats

LIVE

11-15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future – Geospatial excellence for a better living

Thank you for your attention!

Contact: glinka@agh.edu.pl 515420646

Information Technology in Civil Engineering Research Group Katedra Geodezji Inżynieryjnej i Budownictwa Wydział Geodezji Górniczej i Inżynierii Środowiska Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie

