

Volunteering for the future – Geospatial excellence for a better living

Trajectory evaluation using repeated rail-bound measurements

Gereon Tombrink, Ansgar Dreier, Lasse Klingbeil, Heiner Kuhlmann

Volunteering for the future – Geospatial excellence for a better living

Mobile Mapping

Volunteering for the future -Geospatial excellence for a better living

Importance of Trajectory Estimation

Volunteering for the future -Geospatial excellence for a better living

Trajectory Evaluation – Goal

Trajectory: Position and Orientation over time

Volunteering for the future -Geospatial excellence for a better living

Trajectory Evaluation – Approaches

Theoretical Approaches

Empirical Approaches

Volunteering for the future – Geospatial excellence for a better living

Trajectory Evaluation – Theoretical Approaches

- Variance-covariance propagation
- Monte-Carlo Simulation

Challenges:

- Combination of multiple sensors
- Closed-source filter-algorithms

Volunteering for the future -Geospatial excellence for a better living

Trajectory Evaluation – Empirical approaches

Indirect methods

- Point-cloud based
- Control point / plane extraction

Disadvantage:

Isolated trajectory evaluation difficult

Volunteering for the future – Geospatial excellence for a better living

Trajectory Evaluation – Empirical approaches

Direct methods

- Pose-by-pose comparison
- Reference: other GNSS solutions / total station

Until now:

- No repetition / repetition with constraints
- Analysis limited to positions

Volunteering for the future – Geospatial excellence for a better living

Trajecto	rv Evaluation – Empirical approaches	
Direct m	Our Approach:	
Birootin	1. Rail track	1
Pose	 140 m in length 	and and a state of the
 Refer 	 All 6 DOF (x, y, z, roll, pitch, yaw) 	
L lus fil us es		e ormaelle
Until nov	2. Own methodology	ircular
• No re	 Evaluation of repeated trajectories 	attorm
	 Precision and Accuracy of all 6 DOF 	
Analys	SIS IIMITED TO POSITIONS	

Trimble.

Volunteering for the future – Geospatial excellence for a better living

Rail Track at the University of Bonn

Volunteering for the future – Geospatial excellence for a better living

Trajectory Evaluation – Goal: Precision and Accuracy

Volunteering for the future – Geospatial excellence for a better living

Trajectory Evaluation using repeated rail-bound measurements

Volunteering for the future -Geospatial excellence for a better living

Trajectory Evaluation using repeated rail-bound measurements

Volunteering for the future – Geospatial excellence for a better living

Trajectory Evaluation using repeated rail-bound measurements

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Overview

1. Spatial sorting

2. Approximation

3. Quality measures

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Overview

1. Spatial sorting

2. Approximation

3. Quality measures

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Spatial Sorting

Volunteering for the future -Geospatial excellence for a better living

Proposed Methodology – Spatial Sorting

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Spatial Sorting

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Spatial Sorting

20

Trimble

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Overview

1. Spatial sorting ✓

2. Approximation

3. Quality measures

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Approximation

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Overview

1. Spatial sorting \checkmark

2. Approximation \checkmark

3. Quality measures

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Quality Measures

Trimble.

Volunteering for the future – Geospatial excellence for a better living

Proposed Methodology – Overview

1. Spatial sorting ✓

2. Approximation \checkmark

3. Quality measures \checkmark

Volunteering for the future – Geospatial excellence for a better living

Experiments

- Motorized track vehicle + trailer
- INS from SBG-Systems
- Leica TS60 for kinematic tracking
- → 20+ laps, ~ 30 mins

Volunteering for the future – Geospatial excellence for a better living

Results – Z-Component

Volunteering for the future -Geospatial excellence for a better living

Results – Precision

- Deviations of raw trajectory compared to mean trajectory
- Manufacturer's specifications met
- Approximately normally distributed

... while single laps show strong systematics

Volunteering for the future – Geospatial excellence for a better living

Results – Root Mean Square Error

- Root Mean Square Error (RMS)
 computed using sliding window (0.5 m)
- Spatial deviation analysis
 - Location dependent irregularities can be revealed

Volunteering for the future -Geospatial excellence for a better living

Results – Root Mean Square Error

Volunteering for the future – Geospatial excellence for a better living

Results – Root Mean Square Error

31

Volunteering for the future -Geospatial excellence for a better living

Results – Accuracy

Volunteering for the future – Geospatial excellence for a better living

Results – Accuracy

Volunteering for the future – Geospatial excellence for a better living

Summary

- Focus: Approach to evaluate navigation sensors
- Verification of the methodology with real sensor data
- Enables detailed analysis of the trajectory estimation quality

Volunteering for the future – Geospatial excellence for a better living

Outlook

- Sensor-Synchronization for alongtrack-deviations
- Static measurement of the track
 - Higher accuracy of reference
 - Rotation accuracy analysis
- Algorithm evaluation using the results of our methodology

Volunteering for the future – Geospatial excellence for a better living

Position deviations – Alternative approach

Volunteering for the future – Geospatial excellence for a better living

Accuracy – Spatial Relationship of sensors

