

Data Quality and Outdoor Positioning Accuracy of Recent Smartphones with Dual Frequency GNSS Receivers Andreas Slateff, Guenther Retscher (TU Wien, Austria, Europe)

Paper No. 11575, Session TS04G

FIG Congress Warszawa, Sep 13, 2022

Original Intention: Student Projects Spring 2021

- Kinematic Positioning Experiments Continuous, Stop & Go
- Precise Point Positioning (PPP), DGNSS
- Google Pixel 5 Android Smartphone with Dual Frequency Receiver L1/L5 Band
- Spectra SP 80 RTK GNSS Receiver as Reference
- Experiments: LBS Course Andreas Slateff, Henri Schauer, Katharina Fehn
- BSc-Thesis Till Weigert

© 2021 Slateff

FIRST FINDINGS with Pixel 5

Missing Carrier Phase Data in All Bands

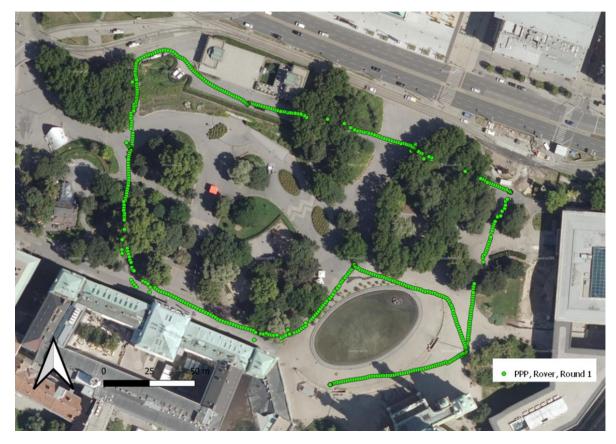
37	> .2021 4 . 25 . 12 . 15 . 19 . 4322258 0 . 32	
38	22.20025.400	
39	C08··39591577.999····	
40	C11··21796184.593····································	
41	C12 · · 25021426 · 205 · · · · · · · · · · · · · · · · · · ·	
42	C13··37727483.185····································	
43	C21··27008420.337··························2188.850········25.800··	
44	C23··2225074.878··································	
45	C25··24151617.661································	
46	C28··24544115.240····································	
47	C34··23276037.512····································	
48	C37 · · 24457593 · 938 · · · · · · · · · · · · · · · · · · ·	
49	E01······24843730.521···	3.89341.100
	24841816.646	
50	E 12 · · · · · · · · · · · · · · · · · ·	
51	E24······26875117.321····································	3.577
	26873195.052	
52	E26······23728227.068·····	9.493
	23726312.893	
53	E31	9.004
	23616537.889	

RINEX file created by Geo++Rinex-Logger app on Pixel5 smartphone, Karlsplatz 2021-Apr-25

27 > 2022 A 21 15 22 50 AA02270

FIRST FINDINGS with Pixel 5 (cont'd)

Often No Useable or Missing L5-Band Data


37 > 2022 4 21 15 23 58.4482378 0 33							
38 99 38422238.871	NaN 29.500						
39 C08 40751375.943	-983.800 28.000						
40 C13 39303822.963 204665319.9891	-801.110 36.700						
41 C20 24517799.614 127670616.1011	3271.679 30.900						
42 C26 25362504.737 132069217.6311	818.171 42.000						
43 C27 26064928.659	-2660.300 28.200						
44 C29 22034856.420 114741278.9321	1613.180 36.300						
45 C30 22133186.547 115253310.0651	-1256.995 34.100						
46 C32 23379042.759 121740810.2831	594.930 38.000						
47 C36 26652750.019 138787863.3851	-2958.450 34.100						
48 E02		28158852.166		-3087.400	23,900		
49 E05		26878376.221		2608.950	23.600		
50 E09		26892906.861	141323179.6481	542.783	38.300	26890983.993	105525996.6541
405.401 24.400							
51 E15		24503797.507	128768324.7211	1864.277	43.900	24501888.729	96150673.7401
1392.142 37.000							
52 E21		28623178.220		2812.300	21.900	28621235.864	
2100.450 23.000							
53 E27		25171333.982	132276253.3091	704.764	40.200	25169429.400	98770246.4741
526.371 41.300							
54 E30		25174359.487	132292151.8041	-2159.387	45.000	25172448.910	98782096.1571
-1612.496 36.300							
55 E36		26571795.862	139635730.0291	-2151.664	37.400	26569886.784	104265941.7241
-1606.632 34.100							
56 G07 25063318.459 131708627.2371	-201.875 29.600						
57 G08 22566826.145 118589471.2141	3042.967 38.800	22564470.975	88547830.4731	2272.214	44.400		
58 G10 21207178.609 111444475.1721	1785.858 40.300	21204820.142	83212268.0781	1333.538	31.900		
59 G15 23868054.024 125427470.1731	-258.686 39.600						
60 G16 21594666.657 113480738.3931	-2152.649 43.400						
61 G18 22923639.728 120464539.2521	-2780.084 38.300						
62 G21 24029513.248	2974.100 22.400						
63 G23 21001485.008 110363547.6471	-491.041 28.500						
64 G26 23416122.289 123052552.8191	-3337.426 32.600	23413703.264	918805555		26.700		
65 G27 20285631.283 106601711.5171	1207.950 43.200	20283277.013	79595934.7341	901.928	44.000		
66 R06 20977995.369	-190.400 25.000						
67 R12 21884553.372	-3352.800 28.400						
68 R13 21227232.626 113352237.9051	-91.581 32.400						

Pixel 5 Rinex File Karlsplatz 2022-Apr-21, also some carrier phase data missing

Slateff, Retscher: Outdoor Positioning Accuracy of Smartphones with Dual Frequency GNSS Receivers

SP80 Reference Trajectory

Stop & Go Pixel 5 and Spectra SP80

(7 Stop Points)

Large Scattering of Positioning Solutions!

© 2021 Fehn, Schauer, Slateff

Slateff, Retscher: Outdoor Positioning Accuracy of Sm

Back to the Start:

- Static Measurements
- Try to Identify Influencing Factors
- Google Pixel 5 and Samsung S21 5G
- Permute Positions & Orientation
- **Permute Configurations**
- **Test Several Apps**

Geo++ GmbH

GNSS/IMU Loade ISTA-UniBwM

toRINEX

to RINEX

GNSS APPS

Nottingham Scientific

Results of Static Measurements:

- Android Apps Unstable and Crash
- Smartphone Display Timeout Sometimes Kills Apps
- Sometimes Carrier Phase Data Recorded, Sometimes Not
- L5/E5 Band Data Scarcely Recorded
- General Low Data Quality (Low S/N-Ratio)
- Positioning Accuracy in Decimeter Range Only (15-30 minutes static) if Carrier Phase Data Available
- Positioning Accuracy in Meters or Worse Only
 - if Carrier Phase Data Not Available or of Too Low Quality or of Too Little Frequency

GNSS Literature: "Publication Bias?"

- In literature, results on technological progress published at the frontline of available technology
- Studies concentrate on particular devices (e.g. Xiaomi Mi 8, Huawei P30)
- Centimeter to decimeter accuracy claimed, e.g.

Wanninger et al. 2020 Psychas et al. 2019 Wu et al. 2019

 Almost no papers address reliability of Android GNSS apps or Smartphone configuration

Results of Smartphone GNSS-Experiments:

Reproducible? Transferable?

- Further investigation necessary!
- Extensive calibration required? (Antenna phase centre variations...)

Some Topics to Consider for GNSS Smartphone-Experiments and Publications:

- Airplane Mode active: Yes/No?
- Developer Mode active: Yes/No?
- Display Timeout (how long?) or Always On Display?
- Other Receivers (e.g. WirelessLAN, Bluetooth,...) active: Yes/No?
- Which Apps Used for Collecting the Data?
- Other Apps Running in the Background?
- Power Supply Active (which one? USB? Magnetic?) or Battery?
- Orientation of the Device in Space?
- ... (to be extended)

Thank You for Your Attention! Any Questions?

Literature

FREEDEN, W., RUMMEL, R. (eds.), 2017. Erdmessung und Satellitengeodäsie. Handbuch der Geodäsie. Springer Spektrum, Berlin.
GLEASON, S., GEBRE-EGZIABHER, D., 2009. GNSS applications and methods. Boston, Mass.: Artech House.
PSYCHAS, D., BRUNO, J., MASSARWEH, L., DARUGNA, F. , 2019. Towards Sub-meter Positioning using Android Raw GNSS Measurements. Conference Paper. doi:10.33012/2019.17077.
WANNINGER, L., HESSELBARTH, A., 2020. GNSS code and carrier phase observations of a Huawei P30 smartphone: quality assessment and centimeter-accurate positioning. GPS Solutions, 24(2).
WU, Q., SUN, M., ZHOU, C., ZHANG, P., 2019. Precise Point Positioning Using Dual-Frequency GNSS Observations on Smartphone. Sensors, 19(9), p.2189.

FEHN, K., SCHAUER, H., SLATEFF, A., **2021**. *Stop and Go Measurements with the Google Pixel 5.* Report Location Based Systems VU, TU Wien (not published)

WEIGERT, T., **2021**. Untersuchung verschiedener Anwendungsszenarien für Smartphones mit Dual-Frequenz GNSS Empfänger im Vermessungswesen. BSc-Thesis TU Wien, April 2021 (not published)

RETSCHER, G. et. al., **2021**. *Performance Analysis of Static and Stop-and-Go Observations Using a Dual Frequency Multi-GNSS Smartphone.* submitted to Appl. Geomatics (under review)