

Volunteering for the future – Geospatial excellence for a better living

Applicability of recent low-cost GNSS receivers to deformation monitoring

Katarzyna Stępniak, Jacek Paziewski, Rafał Sieradzki, Radosław Baryła

UNIVERSITY University of Warmia and Mazury in Olsztyn, Poland

katarzyna.stepniak@uwm.edu.pl, jacek.paziewski@uwm.edu.pl, rafal.sieradzki@uwm.edu.pl, baryla@uwm.edu.pl

1. MOTIVATION

- Geodetic class equipment allows to achieve accuracy in the order of millimeters. Therefore, it has been usually employed in the applications where high accuracy and precision are needed.
- However, the geodetic receivers imply high costs, what is often a severe constraint for the institutions and research communities with a limited budget and can discourage using the GNSS technique.
- Can low-cost equipment be the solution to this problem?
- The goal of this study is to:
 - assess the positioning accuracy of recent multi-frequency low-cost receivers.
- We investigate their applicability to deformation monitoring at a local scale and examine whether, when GNSS observations are processed in the state-of-the-art scientific software, they can achieve a level of accuracy close to that of high-grade receivers.

Volunteering for the future – Geospatial excellence for a better living

2. DATA AND METHODS

- Five low-cost receivers were used to collect the GNSS observations:
 - pairs of u-blox ZED-F9P and Septentrio MOSAIC-X5 receivers, and a single SkyTraq receiver.
- Two different antennas were employed:
 - the Trimble GNSS choke ring antenna TRM59800.00 NONE and the patch u-blox ANN-MB antenna.
- A high-grade Trimble Alloy receiver was also installed and treated as a benchmark.

Table 1: Summary of the receiver and antenna sets used in the experiments.

Station name	Receiver type	Antenna type			
SEP3	Septentrio MOSAIC-X5 S/N: #1	choke ring TRM59800.00			
	•	u-blox ANN-MB			
SEP6	Septentrio MOSAIC-X5 S/N: #2	choke ring TRM59800.00			
		u-blox ANN-MB			
SKY7	SkyTraq	choke ring TRM59800.00			
UBL1	u-blox ZED-F9P S/N: #1	choke ring TRM59800.00			
		u-blox ANN-MB			
UBL9	u-blox ZED-F9P S/N: #2	choke ring TRM59800.00			
		u-blox ANN-MB			
TDIO		choke ring TRM59800.00			
TRI2	Trimble Alloy	u-blox ANN-MB			

PLATINUM SPONSOR

Volunteering for the future – Geospatial excellence for a better living

2. DATA AND METHODS

Three different variants of processing in **Bernese GNSS Software v.5.2**:

- 1) GPS-only, depicted further as "G";
- 2) GPS + GLONASS, depicted further as "GR";
- 3) GPS + GLONASS + Galileo, depicted further as "GRE".

Table 2: Selected GNSS data processing parameters.

Observations	Double-differenced dual-frequency phase and code		
Processing model	Relative, geometry-based		
Reference station	Permanent OPNT station, 13 km far from		
	the measurement field		
Sessions	24 h with the 30 s sampling rate		

Volunteering for the future – Geospatial excellence for a better living

3. RESULTS OF DATA PROCESSING (1) Statistics of the combined solution

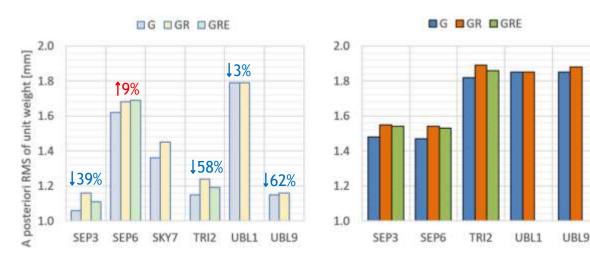


Fig. 1a A posteriori RMS error receiver + TRM59800.00 choke ring antenna sets (left); receiver + ANN-MB patch antenna sets (right).

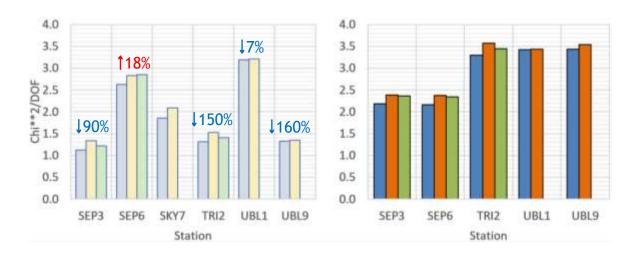


Fig. 1b Chi-square per degree-of-freedom receiver + TRM59800.00 choke ring antenna sets (left); receiver + ANN-MB patch antenna sets (right).

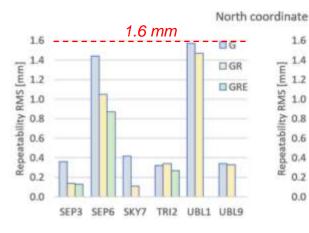
Volunteering for the future – Geospatial excellence for a better living

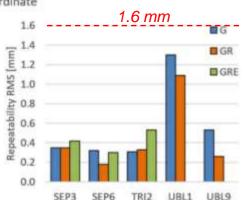
3. RESULTS OF DATA PROCESSING

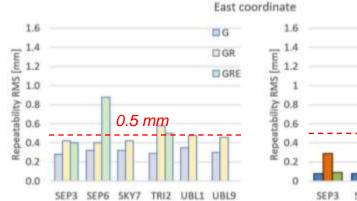
(2) Ambiguity resolution success rate (ASR)

Table 3: L1/L2 SIGMA ASR, mean over all daily sessions for each station [%].

Receiver + TRM59800.00 choke ring antenna sets									
Processing variant		G	GR			GRE			
Baseline	Constellation	G	G	R	GR	G	R	Е	GRE
OPNT-SEP3		93.4	94.4	<u>74.0</u>	86.4	94.2	<u>73.7</u>	100.0	89.6
OPNT-SEP6		92.5	94.0	<u>68.4</u>	83.1	95.1	<u>68.7</u>	95.5	86.8
OPNT-SKY7		99.5	99.1	96.8	97.8	-	-	-	-
OPNT-TRI2		87.9	89.6	97.4	92.5	89.8	96.7	98.7	93.8
OPNT-UBL1		90.1	90.1	81.2	88.7	-	-	-	-
OPNT-UBL9		85.5	86.3	94.9	87.4	-	-	-	-
Receiver + ANN-MB patch antenna sets									
Processing variant G GR GRE				RE					
Baseline	Constellation	G	G	R	GR	G	R	Е	GRE
OPNT-SEP3		95.1	95.1	<u>73.9</u>	85.9	94.8	<u>73.0</u>	98.3	88.8
OPNT-SEP6		95.1	95.5	<u>73.5</u>	85.9	94.8	<u>73.0</u>	98.3	88.6
OPNT-TRI2		95.9	96.5	96.5	96.5	96.2	95.1	93.0	94.9
OPNT-UBL1		90.7	91.0	98.6	92.2	-	-	-	-
OPNT-UBL9		91.7	90.2	80.5	88.8	-	-	-	-




Trimble



Volunteering for the future – Geospatial excellence for a better living

3. RESULTS OF DATA PROCESSING (3) Repeatability of estimated coordinates

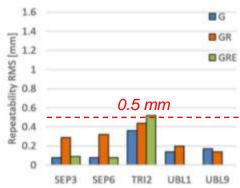
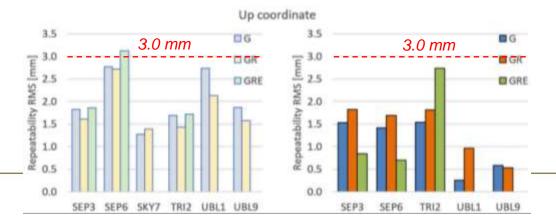
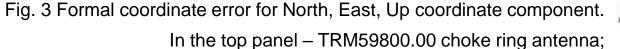



Fig. 2 Average coordinate repeatability of North, East, and height components for the stations with TRM59800.00 choke ring antenna and ANN-MB patch antenna in the left and right panels, respectively.

PLATINUM SPONSORS



Volunteering for the future – Geospatial excellence for a better living

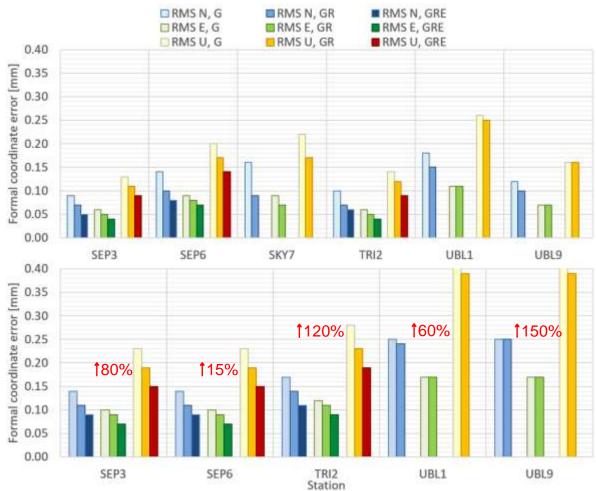

3. RESULTS OF DATA PROCESSING (4) Formal coordinate errors

Table 4: Improvement in formal error for SEP3, SEP6, SKY7 and TRI2.

North	East	Up				
GPS+GLONASS						
22%	14%	18%				
GPS+GLONASS+Galileo						
35%	28%	32%				

in the bottom panel – ANN-MB patch antenna.

Volunteering for the future – Geospatial excellence for a better living

4. CONCLUSIONS

- The results of this study confirmed that with <u>the optimal GNSS data processing strategy and the</u> <u>state-of-the-art scientific software</u>, the latest low-cost receivers might be considered a mature complement to high-grade receivers in engineering applications, such as deformation monitoring.
- We showed the significant impact of the GNSS antenna type on the precision and accuracy of the coordinate estimates. We proved that <u>applying a choke ring antenna instead of a patch one to a</u> <u>low-cost receiver can greatly increase the positioning accuracy</u>.
- The experiment also confirmed that the application of multi-GNSS data processing significantly reduces the error of estimated coordinates regardless of the employed antenna.

Volunteering for the future – Geospatial excellence for a better living

> WYDZIAŁ Goinżynier

Thank you for your attention!

This study was supported by the project "Innovative precise monitoring system based on integration of low-cost GNSS and IMU MEMS sensors", POIR 01.01.01-00-0753/21, co-financed by the European Regional Development Fund within the Sub-measure 1.1.1 of the Smart Growth Operational Program 2014–2020.

Applicability of recent low-cost GNSS receivers to deformation monitoring

Katarzyna Stępniak, Jacek Paziewski, Rafał Sieradzki, Radosław Baryła

