

Volunteering for the future -Geospatial excellence for a better living

Noise Characterization in BDS-3 Multi-Frequency Observables

Robert Galatiya SUYA¹, Yung-Tsang CHEN², Chiew-Foong KWONG³, Penghe ZHANG⁴

¹Geospatial Research Group, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China

^{1,2} Department of Civil Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China

³ Department of Electrical and Electronics Engineering, Faculty of Science and Engineering, University of Nottingham, Ningbo 315100, China ⁴ Motovis Intelligent Technologies (Shanghai) Co., Ltd, P.O Box 201203, China

Volunteering for the future – Geospatial excellence for a better living

- □ Introduction
- Experimental Design
- Results
- Concluding Remarks

Volunteering for the future – Geospatial excellence for a better living

- □ Introduction
- Experimental Design
- Results
- Concluding Remarks

Introduction

Multiple BDS-3 satellites broadcast signals on different frequencies

Permits both system and inter-system compatibility and interoperability (Table 1)
 Useful in satellite-based positioning

However, noise characterization in BDS is limited to BDS -2

BDS-3 noise is comparatively analyzed with respect to GPS and Galileo constellations
 Contribution of BDS-3, GPS, and Galileo on PPP

Frequency	Observation Codes			MEO	IGSO	GEO	Compatibility	
B1I	2I	2Q	2X	\checkmark	\checkmark	\checkmark	B1 (BDS-2)	
B3I	6I	6Q	6X	\checkmark	\checkmark	\checkmark	B3 (BDS-2)	
B1C	1D	1P	1X	\checkmark	\checkmark	-	L1 and E1 (GPS and GAL)	
B2a	5D	5P	5X	\checkmark	\checkmark	-	L5 and E5a (GPS and GAL)	
B2b	7D	7P	7Z	\checkmark	\checkmark	-	E5b (GAL)	
B2a+b	8D	8P	8X	\checkmark	\checkmark	-	E5a+b (GAL)	

Table 1: Overview of BDS-3 service signals as of March 2022

Volunteering for the future – Geospatial excellence for a better living

- Introduction
- Experimental Design
- Results
- Concluding Remarks

Volunteering for the future – Geospatial excellence for a better living

Experimental Design

- Stations 17 globally distributed (used for Multipath+SNR)
 - 13 stations were used for PPP
- DOY 060 to 066 in 2022
- Constellations BDS-3, GPS, and GAL

Figure 1: Distribution of the GNSS tracking stations for data processing

Volunteering for the future – Geospatial excellence for a better living

- Introduction
- Experimental Design
- Results
- Concluding Remarks

Multipath and SNR Characterization

Pseudorange multipath and SNR comparison

• Stations — 17 that can track BDS-3, GAL, and GPS frequency signals

Observation Codes

Figure 2: Code multipath and SNR comparison

Multipath / SNR — ~ 40 cm / ~40 dBHz

- < 40 cm / ~40 dBHz

— ~ 40 cm / ~40 dBHz

Multipath Characterization

Pseudorange multipath comparison

Figure 3: Code multipath comparison

Code multipath — range of 22 to 46 and 27 to 50 cm for B1C and B2a signals, respectively

SNR Characterization

SNR comparison — Interoperable Signals

Figure 4: Stations with interoperable signals

- Averaged solution on DOY 060 (2022)
- Stations 5 that can track BDS-3, GAL, and GPS frequency signals

Figure 5: SNR comparison

PPP Performance

STD: 25th, 50th and 75th
 Percentiles

XXVII FIG CONGRESS

11–15 SEPTEMBER 2022 Warsaw, Poland

Volunteering for the future -

Geospatial excellence

for a better living

PPP Performance

● STD: 25th, 50th and 75th Percentiles

Figure 6: STD comparison

	Mean (cm)	25%	50%	75%	Remark
BDS-3	1.55	0.76	0.90	1.40	North
	1.94	0.89	1.11	1.85	East
	4.58	1.76	2.60	3.58	Up
BDS-3+GPS+GAL	0 59 (62)	0 38 (50)	0 47 (48)	0 78 (44)	North
DDS 5 OI DI OI DI OI L	0.57(65)	0.39 (56)	0.51 (54)	0.78(44) 0.82(56)	East
	1.42 (69)	0.93 (47)	1.25 (52)	1.74 (51)	Up

Table 2: PPP numerical statistics

Volunteering for the future -Geospatial excellence for a better living

GPS

30°

Figure 7a: Position time series at ALIC station

BDS Galieo °06 °06 150° 500 –180°

Figure 7b: SkyPlot for ALIC station on DOY 066 (2022)

Volunteering for the future – Geospatial excellence for a better living

Figure 7a: Position time series at ALIC station

 Table 3: Position time series comparison (cm)

Constellation	Ν	Е	U	
BDS-3	0.67	0.68	2.37	
BDS+GPS+GAL	0.46	0.48	1.43	

Volunteering for the future – Geospatial excellence for a better living

- Introduction
- Experimental Design
- Results
- Concluding Remarks

Volunteering for the future – Geospatial excellence for a better living

Key Points

- Code multipath and SNR comparable between the three constellations
- BDS-3 only can achieve cm-level precision in the daily solutions
- BDS-3 PPP benefit from the less noisy modernized signals broadcast by GPS and GAL satellites
- What next?
- short and zero baseline tests

Need To Know More? ^[1]

Volunteering for the future -Geospatial excellence for a better living

End of Presentation

PLATINUM SPONSORS

[1] R. G. Suya, Y.-T. Chen, C. F. Kwong, P. Zhang, Noise Characterization in BeiDou-3 Multi-Frequency Observables, in: XXVII FIG Congress, Volunteering for the future-Geospatial excellence for a better living, 11-15 September, Warsaw, Poland, 2022. Available at: <u>https://www.fig.net/fig2022/technical_program.htm</u>